Skip to main content

Advertisement

Log in

Effect of (quasi-)optimum model parameter sets and model characteristics on future discharge projection of two basins from Europe and Asia

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Uncertainty is an inherent, unavoidable feature in the modeling of natural processes. This is particularly a sensitive issue when dealing with forecasting, especially in the context of climate change impacts. Apart from the uncertainty introduced by different climate projections, additional sources of uncertainty have been acknowledged in the literature: driving models, input information, regionalization, parameter choice, downscaling techniques, among others. In this study, we focus as primary goal on the uncertainty introduced by various set of parameters in the twenty-first century projections of runoff in two large river basins: the Rhine in Europe and the Ganges in Asia. For this purpose, we apply a robust parameter estimation optimization algorithm to account for the uncertainty given by a quasi-optimum parameter set choice. A total of 1000 robust and well-performing parameter sets are found and applied for uncertainty analysis. Here we analyze how much discharge projections diverge, given sets of parameters with similar performance. Results suggest that parameter uncertainty is strongly related to model complexity in both basins. To contrast this uncertainty with other important sources, five general circulation models together with four climate change emission scenarios (Representative Concentration Pathways, RCP) are analyzed. Two hydrological models are used as well to test the impact of model conception on uncertainty. Results show that the contribution of parameter choice to uncertainty for the Ganges is rather stable in time and comparatively small for the periods 2006 to 2035, 2036 to 2065, and 2070 to 2099. In the case of Rhine, results are more heterogeneous and change over time, with increasing importance of GCM/RCPs toward the end of the century. Major differences are attributable to GCMs ranging from 60 to 80% followed by RCPs in the range 12–30%, whereas differences due to parameter sets range from 3 to 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bárdossy A, Singh SK (2008) Robust estimation of hydrological model parameters. Hydrol Earth Syst Sci 12:1273–1283

    Article  Google Scholar 

  • Barnett V (1976) The ordering of multivariate data. J R Stat Soc Ser Gen 139:318–355. doi:10.2307/2344839

    Article  Google Scholar 

  • Bergström S (1995) The HBV model. Water resources publications, Littleton, pp 443–476

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Proced 6(3):279–298

  • Boyle DP, Gupta HV, Sorooshian S, Koren V, Zhang Z, Smith M (2001) Toward improved streamflow forecasts: value of semidistributed modeling. Water Resour Res 37:2749–2759. doi:10.1029/2000WR000207

    Article  Google Scholar 

  • Chen J, Brissette FP, Poulin A, Leconte R (2011) Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour Res 47:W12509. doi:10.1029/2011WR010602

    Google Scholar 

  • Donoho DL, Gasko M (1992) Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann Stat 20:1803–1827. doi:10.1214/aos/1176348890

    Article  Google Scholar 

  • Exbrayat J-F, Buytaert W, Timbe E, Windhorst D, Breuer L (2014) Addressing sources of uncertainty in runoff projections for a data scarce catchment in the Ecuadorian Andes. Clim Chang 125:221–235. doi:10.1007/s10584-014-1160-x

    Article  Google Scholar 

  • Fraiman R, Liu RY, Meloche J (1997) Multivariate density estimation by probing depth. Lect Notes-Monogr Ser 31:415–430

    Article  Google Scholar 

  • Götzinger J (2007) Distributed conceptual hydrological modelling—simulation of climate, land use change impact and uncertainty analysis (Dissertation) 7/2007. ISBN: 3–933761–68-9

  • Götzinger J, Bárdossy A (2008) Generic error model for calibration and uncertainty estimation of hydrological models. Water Resour Res 44:W00B07. doi:10.1029/2007WR006691

    Article  Google Scholar 

  • Haddeland I, Clark DB, Franssen W, Ludwig F, Voß F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeorol 12:869–884. doi:10.1175/2011JHM1324.1

    Article  Google Scholar 

  • Harding BL, Wood AW, Prairie JR (2012) The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River basin. Hydrol Earth Syst Sci 16:3989–4007. doi:10.5194/hess-16-3989-2012

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction—the ISI-MIP approach. Earth Syst Dynam 4:219–236. doi:10.5194/esd-4-219-2013

    Article  Google Scholar 

  • Houska T, Kraft P, Chamorro-Chavez A, Breuer L (2015) SPOTting model parameters using a ready-made python package. PLoS One 10(12):e0145180. doi:10.1371/journal.pone.0145180.2015

    Article  Google Scholar 

  • Hugg J, Rafalin E, Seyboth K, Souvaine D (2006) An experimental study of old and new depth measures, In: 2006 Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments (ALENEX), Proceedings. Society for Industrial and Applied Mathematics, pp 51–64

  • Hundecha Y, Bárdossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol 292:281–295. doi:10.1016/j.jhydrol.2004.01.002

    Article  Google Scholar 

  • Hundecha Hirpa Y (2005) Regionalization of parameters of a conceptual rainfall runoff model. Dissertation, University of Stuttgart

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Bosc hung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1535. doi:10.1017/CBO9781107415324

  • Jung I-W, Chang H (2011) Assessment of future runoff trends under multiple climate change scenarios in the Willamette River Basin, Oregon, USA. Hydrol Process 25:258–277. doi:10.1002/hyp.7842

    Article  Google Scholar 

  • Kavetski D, Franks SW, Kuczera G (2003) Confronting input uncertainty in environmental modelling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. American Geophysical Union, USA, pp 49–68

    Chapter  Google Scholar 

  • Krysanova V, Hattermann FF (2017) Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results. Clim. Change 141:363–379. doi:10.1007/s10584-017-1919-y 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201:272–288. doi:10.1016/S0022-1694(97)00041-3

    Article  Google Scholar 

  • Liu RY (1990) On a notion of data depth based on random simplices. Ann Stat 18:405–414. doi:10.1214/aos/1176347507

    Article  Google Scholar 

  • Liu RY, Parelius JM, Singh K (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh). Ann Stat 27:783–858. doi:10.1214/aos/1018031260

    Google Scholar 

  • Miller K, Ramaswami S, Rousseeuw P, Sellarès JA, Souvaine D, Streinu I, Struyf A (2003) Efficient computation of location depth contours by methods of computational geometry. Stat Comput 13:153–162. doi:10.1023/A:1023208625954

    Article  Google Scholar 

  • Moore R (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J 30:273–297

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Oja H (1983) Descriptive statistics for multivariate distributions. Stat Probab Lett 1:327–332. doi:10.1016/0167-7152(83)90054-8

    Article  Google Scholar 

  • Rousseeuw PJ, Struyf A (1998) Computing location depth and regression depth in higher dimensions. Stat Comput 8:193–203. doi:10.1023/A:1008945009397

    Article  Google Scholar 

  • Schaefli B, Talamba DB, Musy A (2007) Quantifying hydrological modeling errors through a mixture of normal distributions. J Hydrol 332:303–315. doi:10.1016/j.jhydrol.2006.07.005

    Article  Google Scholar 

  • Singh SK (2010) Robust parameter estimation in gauged and ungauged basins. Dissertation, University of Stuttgart

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7:270–292

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Teng J, Vaze J, Chiew FHS, Wang B, Perraud J-M (2011) Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J Hydrometeorol 13:122–139. doi:10.1175/JHM-D-11-058.1

    Article  Google Scholar 

  • Tukey JW (1975) Mathematics and the picturing of data. Presented at the Proceedings of the international congress of mathematicians, pp 523–531

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vardi Y, Zhang C-H (2000) The multivariate L1-median and associated data depth. Proc Natl Acad Sci 97:1423–1426. doi:10.1073/pnas.97.4.1423

    Article  Google Scholar 

  • Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci Discuss 5:13–26

    Article  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848. doi:10.1175/2011JHM1369.1

    Article  Google Scholar 

  • Wilby RL (2005) Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol Process 19:3201–3219. doi:10.1002/hyp.5819

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 42:W02419. doi:10.1029/2005WR004065

    Article  Google Scholar 

  • Zuo Y, Serfling R (2000) General notions of statistical depth function. Ann Stat 28:461–482

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Deutsche Forschungsgemeinschaft for funding this work (BR 2238/5-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chamorro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, A., Kraft, P., Pauer, G. et al. Effect of (quasi-)optimum model parameter sets and model characteristics on future discharge projection of two basins from Europe and Asia. Climatic Change 142, 559–573 (2017). https://doi.org/10.1007/s10584-017-1974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1974-4

Keywords

Navigation