Skip to main content

Advertisement

Log in

Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Extreme heat is a significant public health challenge in urban environments that disproportionally impacts vulnerable members of society. In this research, demographic, economic and climate projections are brought together with a statistical approach linking extreme heat and mortality in Houston, Texas. The sensitivity of heat-related non-accidental mortality to future changes of demographics, income and climate is explored. We compare climate change outcomes associated with two different Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, which describe alternate future scenarios for greenhouse gas emissions and concentrations. For each RCP, we explore demographic and economic scenarios for two plausible Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Our findings suggest that non-accidental mortality in 2061–2080 may increase for all combinations of RCP and SSP scenarios compared to a historical reference period spanning 1991–2010. Notably, increased heat-related non-accidental mortality is associated with changes in the size and age of the population, but the degree of sensitivity is highly uncertain given the breadth of plausible socioeconomic scenarios. Beyond socioeconomic changes, climate change is also important. For each socioeconomic scenario, non-accidental mortality associated with the lower emissions RCP4.5 scenario is projected to be 50 % less than mortality projected under the higher emissions RCP8.5 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson GB, Bell ML (2011) Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ Health Perspect 119:210–218

    Article  Google Scholar 

  • Borden KA, Cutter SL (2008) Spatial patterns of natural hazards mortality in the United States. Int J Health Geogr. doi:10.1186/1476-072X-7-64

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part 1: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Chen F et al. (2007) Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J Appl Meteorol Climatol 46:694–713. doi:10.1175/JAM2463.1

    Article  Google Scholar 

  • Ching J et al. (2009) National Urban Database and access portal tool. B Am Meteorol Soc 90:1157–1168. doi:10.1175/2009BAMS2675.1

    Article  Google Scholar 

  • Conlon K, Monaghan AJ, Hayden MH, Wilhelmi O (2016) Potential impacts of future climatic and land use changes on intra-urban heat exposure in Houston, Texas. PLoS One 11:e148890

    Google Scholar 

  • Cosgrove BA et al. (2003) Real-time and retrospective forcing in the north American land data assimilation system (NLDAS) project. J Geophys Res 108:8842. doi:10.1029/2002JD003118

    Article  Google Scholar 

  • Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155:80–87

    Article  Google Scholar 

  • Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett 37:L15701. doi:10.1029/2010GL043888

    Article  Google Scholar 

  • Duffy PB, Tebaldi C (2012) Increasing prevalence of extreme summer temperatures in the U.S. Clim Chang 111:487–495. doi:10.1007/s10584-012-0396-6

    Article  Google Scholar 

  • Emerson MO, Brater J, Howell J, Wilner Jeaenty P, Cline M (2013) Houston region grows more racially/ethnically diverse, with small declines in segregation. Kinder Institute for Urban Research & Hobby Center for the Study of Texas. http://kinder.rice.edu/uploadedFiles/Urban_Research_Center/Media/Houston%20Region%20Grows%20More%20Ethnically%20Diverse%202-13.pdf. Accessed 25 July 2015

  • Greater Houston Partnership Research Department (GHPRD) (2014) Social, Economic and demographic characteristics of metro Houston. http://www.houston.org/pdf/research/quickview/Population_Employment_Forecast.pdf. Accessed 30 July 2015

  • Greene S, Kalkstein LS, Mills DM, Samenow J (2011) An examination of climate change on extreme heat events and climate–mortality relationships in large U.S. cities. Weather Climate Soc 3:281–292. doi:10.1175/WCAS-D-11-00055.1

    Article  Google Scholar 

  • Heaton MJ, Sain SR, Greasby TA, Uejio CK, Hayden MH, Monaghan AJ, Boehnert J, Sampson K, Banerjee D, Nepal V, Wilhelmi OV (2014) Characterizing urban vulnerability to heat stress using a spatially varying coefficient model. Spatial Spatiotemporal Epidemiol 8:23–33

    Article  Google Scholar 

  • Homer CG, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Rem S 70:829–840

    Article  Google Scholar 

  • Hurrell JW et al. (2013) The community earth system model: a framework for collaborative research. B Am Meteorol Soc 94:1339–1360

    Article  Google Scholar 

  • IIASA (International Institute for Applied Systems Analysis) (2015) SSP Database (Shared Socioeconomic Pathways) - Version 0.9.3. https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about. Accessed 17 March 2015

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschufng J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang L, O’Neill, BC (2009) Household projections for rural and urban areas of major regions of the world. IIASA Interim Report IR-09-026. Laxenburg

  • Jones TS et al. (1982) Morbidity and mortality associated with the July 1980 heat wave in St. Louis and Kansas City, Mo. J Am Med Assoc 247:3327–3331

    Article  Google Scholar 

  • Kay JE et al. (2014) The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. B Am Meteorol Soc. doi:10.1175/BAMS-D-13-00255.1

    Google Scholar 

  • KC S, Lutz W (2014) The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Chang. doi:10.1016/j.gloenvcha.2014.06.004

    Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi:10.1002/grl.50256

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2013) Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts. J Appl Meteorol Clim 52:2051–2064. doi:10.1175/JAMC-D-13-02.1

    Article  Google Scholar 

  • Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case only analysis. Environ Health Persp 114:1331–1336

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty-first century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, et al. (2006) North American regional reanalysis. B Am Meteorol Soc 87:343–360

  • Monaghan AJ, Hu L, Brunsell NA, Barlage MJ, Wilhelmi OV (2014) Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. J Geophys Res 119:6376–6392. doi:10.1002/2013JD021227

    Google Scholar 

  • O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang 122:387–400

    Article  Google Scholar 

  • O’Neill BC, Ebi KL, Kemp-Benedict E, et al. (2015) The roads ahead: narratives for the Shared Socioeconomic Pathways describing world futures in the twenty-first century. Glob Environ Chang. doi:10.1016/j.gloenvcha.2015.01.004

    Google Scholar 

  • Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N, Feddema J, Hu L, Steinhoff DF (2015a) Interactions between urbanization, heat stress, and climate change. Clim Chang 129:525–541. doi:10.1007/s10584-013-0936-8

    Article  Google Scholar 

  • Oleson KW, Anderson GB, Jones B, McGinnis SA, Sanderson B (2015b) Avoided impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Clim Chang 132:1–16. doi:10.1007/s10584-015-1504-1

    Article  Google Scholar 

  • Parrish DD et al. (2009) Overview of the second Texas air quality study (TexAQS II) and the Gulf of Mexico atmospheric composition and climate study (GoMACCS. J Geophys Res 114:D00F13. doi:10.1029/2009JD011842

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    Article  Google Scholar 

  • Sanderson B, Tebaldi C, Knutti R (2015) A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Clim Chang. doi:10.1007/ s10584-015-1567-z

    Google Scholar 

  • Schuman SH (1972) Patterns of urban heat-wave deaths and implications for prevention: data from New York and St. Louis during July 1966. Environ Res 5:59–75

    Article  Google Scholar 

  • Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, Wilhelm JL (1996) Heat-related deaths during the July 1995 heat wave in Chicago. New Engl J Med 335:84–90. doi:10.1056/NEJM199607113350203

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the Experiment Design. B Amer Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thomson AM, Calvin KV, et al. (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94

    Article  Google Scholar 

  • Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gulino SP, Samenow JP (2011) Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 17:498–507

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, et al. (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • van Vuuren DP, Riahi K, Moss R, Edmonds J, Thomson A, Nakicenovic N, Kram T, Berkhout F, Swart R, Janetos A, Rose SK, Arnell N (2012) A proposal for a new scenario framework to support research and assessment in different climate research communities. Glob Environ Chang 22:21–35

    Article  Google Scholar 

  • Wilhelmi OV, Hayden MH (2010) Connecting people and place: a new framework for reducing urban vulnerability to extreme heat. Environ Res Lett 5:014021. doi:10.1088/1748-9326/5/1/014021

    Article  Google Scholar 

  • Wilhelmi O, de Sherbinin A, Hayden M (2012) Exposure to heat stress in urban environments: Current status and future prospects in a changing climate. In: King B, Crews K (eds) Ecologies and Politics of Health. Routledge Press, New York, pp. 219–238

    Google Scholar 

  • Xia Y, et al (2012) Continental-scale water and energy flux analysis and validation for the north American land data assimilation system project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J Geophys Res 117:D03109. doi:10.1029/2011JD016048

Download references

Acknowledgments

This research was supported by the National Aeronautics and Space Administration (NNX10AK79G) and the National Science Foundation (NSF) Research Network on Statistics in the Atmosphere and Ocean Sciences (DMS-1106862; DMS-1417856). The National Center for Atmospheric Research (NCAR) is sponsored by NSF. Brian O’Neill provided data for the demographic projections. The CESM project is supported by NSF and the Office of Science (BER) of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Monaghan.

Additional information

Submitted to Climatic Change as part of a Special Issue on the Benefits of Reduced Anthropogenic Climate changE (BRACE).

This article is part of a Special Issue on “Benefits of Reduced Anthropogenic Climate ChangE (BRACE)” edited by Brian O’Neill and Andrew Gettelman.

Electronic supplementary material

ESM 1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsha, A., Sain, S.R., Heaton, M.J. et al. Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Climatic Change 146, 471–485 (2018). https://doi.org/10.1007/s10584-016-1775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1775-1

Navigation