Skip to main content

Advertisement

Log in

A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

There is growing evidence that the role internal variability plays in our confidence in future climate projections has been under-appreciated in past assessments of model projections for the coming decades. In light of this, a 15 member ensemble has been produced to complement the existing 30 member “Large Ensemble” conducted with the Community Earth System Model (CESM). In contrast to the Large Ensemble, which explored the variability in RCP8.5, our new ensemble uses the moderate mitigation scenario represented by RCP4.5. By comparing outputs from these two ensembles, we assess at what point in the future the climates conditioned on the two scenarios will begin to significantly diverge. We find in general that while internal variability is a significant component of uncertainty for periods before 2050, there is evidence of a significantly increased risk of extreme warm events in some regions as early as 2030 in RCP8.5 relative to RCP4.5. Furthermore, the period 2061-2080 sees largely separate joint distributions of annual mean temperature and precipitation in most regions for the two ensembles. Hence, in the CESM’s representation of the Earth System for the latter portion of the 21st century, the range of climatic states which might be expected in the RCP8.5 scenario is significantly and detectably further removed from today’s climate state than the RCP4.5 scenario even in the presence of internal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson GB, Oleson K, Jones B, Peng RD (in review) Climatic Change

  • Arnell NW, Lowe J, Brown S, Gosling S, Gottschalk P, Hinkel J, Lloyd-Hughes B, Nicholls R, Osborn T, Osborne TM, et al. (2013) Nat Clim Chang 3(5):512

    Article  Google Scholar 

  • Branstator G, Teng H, Meehl GA, Kimoto M, Knight JR, Latif M, Rosati A (2012) J Clim 25(6):1827

    Article  Google Scholar 

  • Caesar J, Lowe JA (2012) J Geophys Res Atmos 117(D15):1984–2012

    Article  Google Scholar 

  • Change C (2014) Cambridge, United Kingdom and New York, USA

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) US Government Printing Office, Washington DC

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Clim Dyn 38(3-4):527

    Article  Google Scholar 

  • Fischer E, Beyerle U, Knutti R (2013) Nat Clim Chang 3(12):1033

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000) Clim Dynam 16(2-3):169

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt G, Russell G, et al. (2007) Atmos Chem Phys 7(9):2287

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner P, Lamarque JF, Large WG, Lawrence D, Lindsay K, et al. (2013) Bull Am Meteorol Soc 94(9):1339

    Article  Google Scholar 

  • Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, et al. (2014) Bull Am Meteorol Soc

  • Lehner F, Deser C, Sanderson B (submitted) Climatic Change

  • Lin L, Gettelman A, Fu Q, Xu Y (submitted) Climatic Change

  • Lombardozzi D, Bonan GB, Nychka DW (2014) Nat Clim Chang 4(9):796

    Article  Google Scholar 

  • Lorenz EN (1969) Tellus 21(3):289. doi:10.1111/j.2153-3490.1969.tb00444.x

    Article  Google Scholar 

  • Mahlstein I, Knutti R, Solomon S, Portmann R (2011) Environ Res Lett 6(3):034009

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla P, Yamagata Y, Kainuma M (2011) Climatic Change 109(1–2):59

    Article  Google Scholar 

  • Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) J Clim 26 (17):6287

    Article  Google Scholar 

  • Messner S, Schrattenholzer L (2000) Energy 25(3):267

    Article  Google Scholar 

  • Oleson K, Anderson G, Jones B, McGinnis S, Sanderson B (2015) Avoided climate impacts of urban and rural heat and cold waves over the US using large climate model ensembles for RCP8.5 and RCP4.5. Climatic Change. doi:10.1007/s10584-015-1504-1

  • O’Neill B, Gettelman A (in preparation)

  • Perkins SE, Fischer EM (2013) Geophys Res Lett 40(21):5793. doi:10.1002/2013GL057833

    Article  Google Scholar 

  • Riahi K, Grübler A, Nakicenovic N (2007) Technol Forecast Soc Chang 74(7):887

    Article  Google Scholar 

  • Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-8.5: exploring the consequence of high emission trajectories. Climatic Change

  • Royston P (1992) Stata Tech Bull 1(3)

  • Sanderson BM, Knutti R, Caldwell P (2015) A representative democracy to reduce interdependency in a multi-model ensemble. J Clim. doi:10.1175/JCLI-D-14-00362.1

  • Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Nat Clim Chang 5(2):86

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  • Tebaldi C, Friedlingstein P (2013) Proc Natl Acad Sci 110(43):17229

    Article  Google Scholar 

  • Tebaldi C, ONeill B, Lamarque JF (2015) Environ Res Lett 10(7):074001

    Article  Google Scholar 

  • Tebaldi C, Wehner M (in review) Climatic Change

  • The CESM Medium Ensemble doi:10.5072/FK22Z1547Z. Available on earthsystemgrid.org

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, et al. (2011) Climatic Change 109(1–2):77

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, et al. (2011) Climatic Change 109:5

    Article  Google Scholar 

  • Van Vuuren DP, Stehfest E, den Elzen MG, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM, et al. (2011) Climatic Change 109(1-2):95

    Article  Google Scholar 

  • Washington WM, Knutti R, Meehl GA, Teng H, Tebaldi C, Lawrence D, Buja L, Strand WG (2009) Geophys Res Lett 36(8)

  • Xu Y, Lamarque JF, Sanderson BM (2015) The importance of aerosol scenarios in projections of future heat extremes. Climatic Change (in press)

Download references

Acknowledgments

Portions of this study were supported by the Office of Science (BER), US Department of Energy, Cooperative Agreement No DE-FC02-97ER62402. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Sanderson.

Additional information

This article is part of a Special Issue on “Benefits of Reduced Anthropogenic Climate ChangE (BRACE)” edited by Brian O’Neill and Andrew Gettelman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanderson, B.M., Oleson, K.W., Strand, W.G. et al. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change 146, 303–318 (2018). https://doi.org/10.1007/s10584-015-1567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1567-z

Navigation