Skip to main content
Log in

Stream temperature in the Basque Mountains during winter: thermal regimes and sensitivity to air warming

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Winter stream temperature variability is important for detritus decomposition and over-wintering of aquatic organisms. However, winter temperatures are rarely studied. We studied water temperatures in 33 streams of the Basque Mountains in Northern Spain. High coherence of stream temperature within the study area and high correlation between stream and air temperature indicate a similar thermal response of streams to daily changes in atmospheric conditions at regional scale. Linear regression models of air temperature against water temperature successfully predict daily stream temperature in watersheds between 1 and 1000 km2 in Northern Spain during winter, but it is not suitable for making long-term predictions because it failed to account for inter-annual trends in stream temperature. Averaging temperature observations collected in different streams to form regional stream temperature indicators enhanced the relationship between air and water temperature and improved the performance of the daily stream temperature model. Four thermal classes (lowland, pluvial, nival and geo streams) defined as a function of the mean water temperature of the coldest day and the winter and daily temperature ranges showed different sensitivity to changes in weather conditions. Therefore, spatial differences in the thermal sensitivity of streams at local scale should be addressed for making predictions about the effects of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arismendi I, Johnson S, Dunham J, Haggerty R, Hockman-Wert D (2012) The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophys Res Lett 39:L10401. doi:10.1029/2012GL051448

    Article  Google Scholar 

  • Arismendi I, Safeeq M, Dunham J, Johnson S (2014) Can air temperature be used to project influences of climate change on stream temperature? Environ Res Lett 9:084015. doi:10.1088/1748-9326/9/8/084015

    Article  Google Scholar 

  • Bartholow J (2005) Recent water temperature trends in the lower Klamath River, California. N Am J Fish Manag 25:152–162. doi:10.1577/M04-007.1

    Article  Google Scholar 

  • Bogan T, Mohseni O, Stefan H (2003) Stream temperature-equilibrium temperature relationship. Water Resour Res 39:1245. doi:10.1029/2003WR002034

    Article  Google Scholar 

  • Bogan T, Stefan H, Mohseni O (2004) Imprints of secondary heat sources on the stream temperature/equilibrium temperature relationship. Water Resour Res 40:W12510. doi:10.1029/2003WR002733

    Article  Google Scholar 

  • Brunet M, Casado M, de Castro M, Galán P, López J, Martín J, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodríguez E, Sanz I, Torres L (2009) Generación de escenarios regionalizados de cambio climático para España. Agencia Estatal de Meteorología, Madrid, Spain

  • Eaton J, Scheller R (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115

    Article  Google Scholar 

  • Gillet N, Graf H, Osborn T (2003) Climate change and the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climate significance and environmental impact, geophysical monograph series 134. AGU, Washington, D. C., pp. 193–209

    Chapter  Google Scholar 

  • Hannah D, Malcolm I, Soulsby C, Youngson A (2004) Heat exchanges and temperatures within a salmon spawning stream in the cairngorms, Scotland: Seasonal and sub-seasonal dynamics. River Res Appl 20:635–652. doi:10.1002/rra.771

    Article  Google Scholar 

  • Hari R, Livingstone D, Siber R, Burkhardt-Holm P, Guttinger H (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob Chang Biol 12:10–26. doi:10.1111/j.1365-2486.2005.01051.x

    Article  Google Scholar 

  • Huntington T, Hodgkins G, Dudley R (2003) Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine. Clim Chang 61:217–236. doi:10.1023/A:1026360615401

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 1535 pp

    Google Scholar 

  • Isaak D, Rieman B (2012) Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob Chang Biol 19:752–751. doi:10.1111/gcb.12073

    Google Scholar 

  • Isaak D, Wollrab S, Horan D, Chandler G (2012) Climate change effects on stream and river temperatures across the northwest U.S. from 1980 to 2009 and implications for salmonid fishes. Clim Chang 113:499–524. doi:10.1007/s10584-011-0326-z

    Article  Google Scholar 

  • Johnson S (2003) Stream temperature: scaling of observations and issues for modelling. Hydrol Process 17:497–499. doi:10.1002/hyp.5091

    Article  Google Scholar 

  • Johnson M, Wilby R, Toone J (2014) Inferring air-water temperature relationships from river and catchment properties. Hydrol Process 28:2912–2928. doi:10.1002/hyp.9842

    Google Scholar 

  • Kaushal S, Likens G, Jaworski N, Pace M, Sides A, Seekell D, Belt K, Secor D, Wingate R (2010) Rising stream and river temperatures in the United States. Front Ecol Environ 8:461–466. doi:10.1890/090037

    Article  Google Scholar 

  • Kelleher C, Wagener T, Gooseff M, McGlynn B, McGuire K, Marshall L (2012) Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol Process 26:771–785. doi:10.1002/hyp.8186

    Article  Google Scholar 

  • Langan S, Johnston L, Donaghy M, Youngson A, Hay D, Soulsby C (2001) Variation in river water temperatures in an upland stream over a 30-year period. Sci Total Environ 265:195–207. doi:10.1016/S0048-9697(00)00659-8

    Article  Google Scholar 

  • Livingstone D, Hari R (2008) Coherence in the response of river and lake temperatures in Switzerland to short-term climatic fluctuations in summer. Proc Int Assoc Theor Appl Limnol 30:449–454

    Google Scholar 

  • Livingstone D, Adrian R, Arvola L, Blenckner T, Dokulil M, Hari R, George G, Jankowski T, Järvinen M, Jennings E, Nõges P, Nõges T, Straile D, Weyhenmeyer G (2010) Regional and supra-regional coherence in limnological variables. In: George G (ed) The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht, Netherlands, pp. 311–337. doi:10.1007/978-90-481-2945-4_17

    Chapter  Google Scholar 

  • Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014) Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol Ecol 87:257–267. doi:10.1111/1574-6941.12221

    Article  Google Scholar 

  • Moatar F, Gailhard J (2006) Water temperature behavior in the River Loire since 1976 and 1881. Compt Rendus Geosci 338:319–328. doi:10.1016/j.crte.2006.02.011

    Article  Google Scholar 

  • Mohseni O, Stefan H, Erickson T (1998) A nonlinear regression model for weekly stream temperatures. Water Resour Res 34:2685–2692. doi:10.1023/a:1024847723344

    Article  Google Scholar 

  • Mohseni O, Erickson T, Stefan H (1999) Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resour Res 35:3723–3733. doi:10.1029/1999WR900193

    Article  Google Scholar 

  • Mohseni O, Stefan H, Eaton J (2003) Global warming and potential changes in fish habitat in U. S. streams. Clim Chang 59:389–409. doi:10.1029/1999wr900193

    Article  Google Scholar 

  • Morrill J, Bales R, Conklin M (2005) Estimating stream temperature from air temperature: implications for future water quality. J Environ Eng 131:139–146. doi:10.1061/(ASCE)0733-9372(2005)131:1(139)

    Article  Google Scholar 

  • Null S, Viers J, Deas M, Tanaka S, Mount J (2013) Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat. Clim Chang 116:149–170. doi:10.1007/s10584-012-0459-8

    Article  Google Scholar 

  • Poirel A, Lauters F, Desaint B (2008) 1977–2006: Trente années de mesures des températures de l’eau dans le Bassin du Rhône. Hydroécol Appl 16:191–213. doi:10.1051/hydro/2009002

    Article  Google Scholar 

  • Saenz J, Zubillaga J, Rodriguez-Puebla C (2001a) Interannual winter temperature variability in the north of the Iberian Peninsula. Clim Res 16:169–179. doi:10.3354/cr016169

    Article  Google Scholar 

  • Saenz J, Rodríguez-Puebla C, Fernández J, Zubillaga J (2001b) Interpretation of interannual winter temperature variations over southwestern Europe. J Geophys Res 106:20641–20651. doi:10.1029/2001jd900247

    Article  Google Scholar 

  • Straile D, Stenseth N (2007) The North Atlantic Oscillation and ecology: links between historical time-series, and lessons regarding future climate warming. Clim Res 34:259–262. doi:10.3354/cr00702

    Article  Google Scholar 

  • van Vliet M, Ludwig F, Zwolsman J, Weedon G, Kabat P (2011) Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour Res 47:W02544. doi:10.1029/2010WR009198

    Google Scholar 

  • van Vliet M, Yearsley J, Franssen W, Haddeland F, Lettenmaier D, Kabat P (2012) Coupled daily streamflow and water temperature modelling in large river basins. Hydrol Earth Syst Sci 9:4303–4321. doi:10.5194/hess-16-4303-2012

    Article  Google Scholar 

  • van Vliet M, Franssen W, Yearsley J, Ludwig F, Haddeland I, Lettenmaier D, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Chang 23:450–464. doi:10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  • Visbeck M, Hurrell J, Polvani L, Cullen H (2001) The North Atlantic Oscillation: past, present, and future. Proc Natl Acad Sci 98:12876–12877. doi:10.1073/pnas.231391598

    Article  Google Scholar 

  • Webb B (1996) Trends in stream and river temperature. Hydrol Processs 10:205–226. doi:10.1002/(SICI)1099-1085(199602)10:23.0.CO;2-1

    Article  Google Scholar 

  • Webb B, Nobilis F (2007) Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol Sci J 52:74–85. doi:10.1623/hysj.52.1.74

    Article  Google Scholar 

  • Webb B, Hannah D, Moore R, Brown L, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918. doi:10.1002/hyp.6994

    Article  Google Scholar 

  • Wilby R, Johnson M, Toone J (2014) Nocturnal river water temperatures: spatial and temporal variations. Sci Total Environ 482–483:157–173. doi:10.1016/j.scitotenv.2014.02.123

    Article  Google Scholar 

  • Woodward G, Gessner M, Giller P, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie B, Tiegs S, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça M, Fleituch T, Lacoursière J, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought L, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. doi:10.1126/science.1219534

    Article  Google Scholar 

Download references

Acknowledgments

The Confederación Hidrográfica del Norte (CHN) has provided water temperature data from the the Asón river. The Bizkaiko Foru Aldundia (BFA) has provided stream temperature data from 7 water quality monitoring sites. Air temperature and wind direction and velocity at Sondika meteorological station have been provided by the Agencia Española de Meteorología (AEMET). Cartography (raster and vectorial layers) has been provided by the Instituto Cartográfico Nacional (ICN), Ur Agentzia and Eusko Jaurlaritza (EJ). Research funds have been provided by Ministerio de Educación y Ciencia (projects CGL2007-66664-C04 and CGL2010-22129-C04) and by the Eusko Jaurlaritza (Research grant IT-302-10). Jon Molinero is currently a PROMETEO researcher for the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador. The authors thank J. Saenz and two anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Molinero.

Electronic supplementary material

ESM 1

(DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinero, J., Larrañaga, A., Pérez, J. et al. Stream temperature in the Basque Mountains during winter: thermal regimes and sensitivity to air warming. Climatic Change 134, 593–604 (2016). https://doi.org/10.1007/s10584-015-1546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1546-4

Keywords

Navigation