Skip to main content

Advertisement

Log in

Inaction and climate stabilization uncertainties lead to severe economic risks

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate stabilization efforts must integrate the actions of many socio-economic sectors to be successful in meeting climate stabilization goals, such as limiting atmospheric carbon dioxide (CO2) concentration to be less than double the pre-industrial levels. Estimates of the costs and benefits of stabilization policies are often informed by Integrated Assessment Models (IAMs) of the climate and the economy. These IAMs are highly non-linear with many parameters that abstract globally integrated characteristics of environmental and socio-economic systems. Diagnostic analyses of IAMs can aid in identifying the interdependencies and parametric controls of modeled stabilization policies. Here we report a comprehensive variance-based sensitivity analysis of a doubled-CO2 stabilization policy scenario generated by the globally-aggregated Dynamic Integrated model of Climate and the Economy (DICE). We find that neglecting uncertainties considerably underestimates damage and mitigation costs associated with a doubled-CO2 stabilization goal. More than ninety percent of the states-of-the-world (SOWs) sampled in our analysis exceed the damages and abatement costs calculated for the reference case neglecting uncertainties (1.2 trillion 2005 USD, with worst case costs exceeding $60 trillion). We attribute the variance in these costs to uncertainties in the model parameters relating to climate sensitivity, global participation in abatement, and the cost of lower emission energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman F, Stanton EA, Bueno R (2010) Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE. Ecol Econ 69:1657–1665. doi:10.1016/j.ecolecon.2010.03.013

    Article  Google Scholar 

  • Anderson B, Borgonovo E, Galeotti M, Roson R (2013) Uncertainty in climate change modeling: Can global sensitivity analysis help? Risk Anal 34:271–293. doi:10.1111/risa.12117

    Article  Google Scholar 

  • Annan JD, Hargreaves JC (2011) On the generation and interpretation of probabilistic estimates of climate sensitivity. Clim Chang 104:423–436. doi:10.1007/s10584-009-9715-y

    Article  Google Scholar 

  • Archer GEB, Saltelli A, Sobol’ IM (1997) Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J Stat Comput Simul 58:99–120

    Article  Google Scholar 

  • Bodman RW, Rayner PJ, Karoli DJ (2013) Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat Clim Chang 3:725–729. doi:10.1038/NCLIMATE1903

    Article  Google Scholar 

  • Butler MP, Reed PM, Fisher-Vanden K, Keller K, Wagener T (2014) Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environ Model Softw 59:10–29. doi:10.1016/j.envsoft.2014.05.001

    Article  Google Scholar 

  • Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: Overview of the EMF22 international scenarios. Energy Econ 31:S64—S81. doi:10.1016/j.eneco.2009.10.013

    Google Scholar 

  • Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB (2012) Quantifying future climate change. Nat Clim Chang 2(6):403–409. doi:10.1038/NCLIMATE1414

    Article  Google Scholar 

  • Courtois P (2004) The status of integrated assessment in climatic policy making: An overview of inconsistencies underlying response functions. Environ Sci Pol 7:69–75. doi:10.1016/j.envsci.2003.10.002

    Article  Google Scholar 

  • Edwards N (2011) Plausible mitigation targets. Nat Clim Chang 1:395–396. doi:10.1038/NCLIMATE1267

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An Introduction to the Bootstrap, Statistics & Applied Probability, vol 57. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • den Elzen MGJ, van Vuuren DP, van Vliet J (2010) Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Clim Chang 99:313–320. doi:10.1007/s10584-010-9798-5

    Article  Google Scholar 

  • EPA (2010). Social cost of carbon for regulatory impact analysis. Tech. rep., U.S. Environmental Protection Agency

  • EPA (2013) Technical update of the social cost of carbon for regulatory impact analysis. Tech. rep., U.S. Environmental Protection Agency

  • Gillingham K, Newell RG, Pizer WA (2008) Modeling endogenous technological change for climate policy analysis. Energy Econ 30:2734–2753. doi:10.1016/j.eneco.2008.03.001

    Article  Google Scholar 

  • Jarvis AJ, Leedal DT, Hewitt CN (2012) Climate-society feedbacks and the avoidance of dangerous climate change. Nat Clim Chang 2:668–671. doi:10.1038/NCLIMATE1586

    Google Scholar 

  • Joos F, Müller-Fürstenberger G, Stephan G (1999) Correcting the carbon cycle representation: How important is it for the economics of climate change? Environ Model Assess 4:133–140

    Article  Google Scholar 

  • Keller K, McInerney D (2008) The dynamics of learning about a climate threshold. Clim Dyn 30:321–332. doi:10.1007/s00382-007-0290-5

    Article  Google Scholar 

  • Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manag 48:723–741. doi:10.1016/j.jeem.2003.10.003

    Article  Google Scholar 

  • Keller K, Robinson A, Bradford DF, Oppenheimer M (2007) The regrets of procrastination in climate policy. Environ Res Lett 2:014004. doi:10.1088/1748-9326/2/2/014004

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat Geosci 1:735–743. doi:10.1038/NGEO337

    Article  Google Scholar 

  • Libardoni AG, Forest CE (2011) Sensitivity of distributions of climate system properties to the surface temperature dataset. Geophys Res Lett 38:L22705. doi:10.1029/2011GL049431

    Article  Google Scholar 

  • Libardoni AG, Forest CE (2013) Sensitivity of distributions of climate system properties to the surface temperature dataset. Geophys Res Lett:40. doi:10.1002/grl.50480

  • Lima M (2011) Visual Complexity: mapping patterns of information. Princeton Architectural Press, New York

    Google Scholar 

  • Luderer G, Pietzcker RC, Bertram C, Kriegler E, Meinshausen M, Edenhofer O (2013) Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ Res Lett 8:034033. doi:10.1088/1748-9326/8/3/034033

    Article  Google Scholar 

  • McInerney D, Lempert R, Keller K (2012) What are robust strategies in the face of uncertain climate threshold responses Clim Chang 112(3–4):547–568. doi:10.1007/s10584-011-0377-1

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Nordhaus WD (1994) Managing the Global Commons: The Economics of Climate Change. The MIT Press, Cambridge

    Google Scholar 

  • Nordhaus W (2007a) Accompanying notes and documentation on development of dice-2007: Notes on dice-2007.delta.v8 as of september 21, 2007. Tech. rep. Yale University

  • Nordhaus WD (2007b) A review of the Stern Review on the Economics of Climate Change. J Econ Lit XLV:686–702

    Article  Google Scholar 

  • Nordhaus WD (2008) A Question of Balance: Weighing the Options on Global Warming Policies. Yale University Press, New Haven. Connecticut

    Google Scholar 

  • Nordhaus WD (2010) Economic aspects of global warming in a post-Copenhagen environment. Proc Natl Acad Sci 107(26):11,721–11,726. doi:10.1073/pnas.1005985107

    Article  Google Scholar 

  • Nordhaus W D (2013) The Climate Casino: Risk, Uncertainty, and Economics in a Warming World. Yale University Press, New Haven. Connecticut

    Google Scholar 

  • Nordhaus W D, Boyer J (2000) Warming the world: Economic models of global warming. The MIT Press, Cambridge

    Google Scholar 

  • NRC (2011) Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. Tech. rep., National Research Council

  • Olson R, Sriver R, Goes M, Urban NM, Matthews HD, Huran M, Keller K (2012) A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model. J Geophys Res 117:D04103. doi:10.1029/2011JD016620

    Google Scholar 

  • Parson EA, Fisher-Vanden K (1997) Integrated assessment models of global climate change. Annu Rev Energy Environ 22:589–628

    Article  Google Scholar 

  • Pizer WA (1999) The optimal choice of climate change policy in the presence of uncertainty. Resour Energy Econ 21:255–287

    Article  Google Scholar 

  • Plischke E, Borgonovo E, Smith CL (2013) Global sensitivity measures from given data. Eur J Oper Res 226:536–550. doi:10.1016/j.ejor.2012.11.047

    Article  Google Scholar 

  • Popp D (2004) ENTICE: endogenous technological change in the DICE model of global warming. J Environ Econ Manag 48:742–768

    Article  Google Scholar 

  • Rogelj J, Hare W, Lowe J, van Vuuren DP, Riahi K, Matthews B, Hanaoka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2C global temperature limit. Nat Clim Chang 1:413–418. doi:10.1038/NCLIMATE1258

    Article  Google Scholar 

  • Rogelj J, McCollum D L, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83. doi:10.1038/nature11787

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145:280–297

    Article  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global Sensitivity Analysis. The Primer. John Wiley & Sons, Chichester

    Google Scholar 

  • Schultz P A, Kasting J F (1997) Optimal reductions in CO2 emissions. Energy Policy 25 (5):491–500

    Article  Google Scholar 

  • Schwanitz V J (2013) Evaluating integrated assessment models of global climate change. Environ Model Softw 50:120–131. doi:10.1016/j.envsoft.2013.09.005

    Article  Google Scholar 

  • Sobol’ I M (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  Google Scholar 

  • Stanton E A, Ackerman F, Kartha S (2009) Inside the integrated assessment models: Four issues in climate economics. Climate and Development 1:166–184. doi:10.3763/cdev.2009.0015

    Article  Google Scholar 

  • Stern N (2007) The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tang Y, Reed P, Wagener T, van Werkhoven K (2007) Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrol Earth Syst Sci 11:793–817

    Article  Google Scholar 

  • UN (2011) World population prospects: The 2010 revision. highlights and advance tables. Tech. rep., United Nations

  • UNEP (2010) The Emissions Gap Report. Tech. rep., United Nations Environment Programme

  • UNEP (2011) Bridging the Emissions Gap: A UNEP Synthesis Report. Tech. rep., United Nations Environment Programme

  • Weyant JP, Olavson T (1999) Issues in modeling induced technological change in energy, environmental, and climate policy. Env Model Assess 4:67–85

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Integrated Assessment Program, Grant No. DE-SC0005171, with additional support from NSF through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO–1240507 and the Penn State Center for Climate Risk Management. The authors thank William Nordhaus for making the DICE model available, and Alex Libardoni, Chris Forest and Roman Olson for providing their empirical climate sensitivity estimates and advice on their use and interpretation. The DICE model and documentation were accessed on 2/5/2011 from http://nordhaus.econ.yale.edu. Current access to the DICE model is at http://www.econ.yale.edu/~nordhaus/homepage/index.html. The CDICE model code is at https://github.com/mpbutler/CDICE2007. Sobol’ sampling and sensitivity analysis code used in this study are from the MOEA Diagnostic Tool http://www.moeaframework.org. Any opinions, findings, and conclusions expressed in this work are those of the authors, and do not necessarily reflect the views of the National Science Foundation or the Department of Energy.

Author Contributions

All authors jointly designed the study. MPB conducted the experiment and wrote the first draft of the manuscript. All authors edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha P. Butler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 750 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, M.P., Reed, P.M., Fisher-Vanden, K. et al. Inaction and climate stabilization uncertainties lead to severe economic risks. Climatic Change 127, 463–474 (2014). https://doi.org/10.1007/s10584-014-1283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-014-1283-0

Keywords

Navigation