Skip to main content

Advertisement

Log in

Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Dengue fever is the most prevalent mosquito-borne viral disease of humans in tropical lands. As an efficient vaccine is not yet available, the only means to prevent epidemics is to control mosquito populations. These are influenced by human behavior and climatic conditions and thus, need constant effort and are very expansive. Examples of succeeded prevention are rare because of the continuous reintroduction of virus or vector from outside, or growing resistance of mosquito populations to insecticides. Climate variability and global warming are other factors which may favour epidemics of dengue. During a pilot study in Claris EC project, a model for the transmission of dengue was built, to serve as a tool for estimating the risk of epidemic transmission and eventually forecasting the risk under climatic change scenarios. An ultimate objective would be to use the model as an early warning system with meteorological forecasts as input, thus allowing better decision making and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EWS:

Early warning systems

GCM:

Global circulation models

References

  • Almeida MCdM, Caiaffa WT, Assunção RM, Proietti FA (2007) Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J Urban Health: Bull N Y Acad Med 84:334–345

    Google Scholar 

  • Anderson RM (1981) Population ecology of infectious disease agents. In: May RM (ed) Theoretical ecology: principles and applications. Blackwell, Oxford, pp 318–355

    Google Scholar 

  • Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Glob Environ Change 14:3–20

    Article  Google Scholar 

  • Barcellos C, Pustai AK, Weber MA, Brito MRV (2005) Identificação de locais com potencial de transmissão de dengue em Porto Alegre através de técnicas de geoprocessamento. Rev Soc Bras Med Trop 38:246–250

    Article  Google Scholar 

  • Bartley LM, Donnelly CA, Garnett GP (2002) The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 96:387–397

    Article  Google Scholar 

  • Beckett CG, Kosasih H, Faisal I, Nurhayati, Tan R, Widjaja S, Listiyaningsih E, Ma’roeff C, Wuryadi S, Bangs MJ, Samsi TK, Yumono D, Hayes CG, Porter KR (2005) Early detection of dengue infections using cluster sampling around index cases. Am J Trop Med Hyg 72:777–782

    Google Scholar 

  • Burnett HS, Matthews M Jr (1997) Sick argument: global warming and the spread of tropical diseases. National Center for Policy Analysis. Brief Analysis 241:1–2

    Google Scholar 

  • Carbajo E, Schweigmann N, Curto SI, Garín Ad, Bejarán R (2001) Dengue transmission risk maps of Argentina. Trop Med Int Health 6:170–183

    Article  Google Scholar 

  • Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLOS Med 2:313–318

    Article  Google Scholar 

  • Christophers SR (1960) Aëdes aegypti (L.)—the yellow fever mosquito—its life history, bionomics and structure, vol. Cambridge University Press, Cambridge

    Google Scholar 

  • Clark DV, Mammen MP Jr, Nisalak A, Puthimethee V, Endy TP (2005) Economic impact of dengue fever/dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg 72:786–791

    Google Scholar 

  • Corrêa PRL, França E, Bogutchi TF (2005) Infestação pelo Aedes aegypti e ocorrência da dengue em Belo Horizonte, Minas Gerais. Rev Saúde Pública 39:33–40

    Article  Google Scholar 

  • Cruz-Pacheco G, Esteva L, Montaño-Hirose JA, Vargas C (2005) Modelling the dynamics of West Nile virus. Bull Math Biol 67:1157–1172

    Article  Google Scholar 

  • Degallier N, Favier C, Boulanger J-P, Menkes CE, Oliveira C, Lima JRC, Mondet B (2004) Hidden dynamics of dengue epidemics in Brazil. In: 2004 ESA annual meeting and exhibition. Our heritage: our future. Salt Palace Convention Center, Entomological Society of America, Salt Lake City, Utah, USA

    Google Scholar 

  • Degallier N, Favier C, Boulanger J-P, Menkes CE, Oliveira C (2005) Une nouvelle méthode d’estimation du taux de reproduction des maladies (Ro): application à l’étude des épidémies de Dengue dans le District Fédéral, Brésil. Environ Risques Santé 4:131–135

    Google Scholar 

  • Degallier N, Favier C, Menkes CE, Boulanger J-P, Servain J, ramalho WM, Lengaigne M (2006) Dengue transmission modeling and risk assessment under climatic changes ICEID. In: International conference on emerging infectious diseases, Atlanta Marriott Marquis, American Society for Microbiology, Atlanta, Georgia, USA, 19–22 March, p 112

  • Depradine CA, Lovell EH (2004) Climatological variables and the incidence of dengue fever in Barbados. Int J Environ Health Res 14:429–441

    Article  Google Scholar 

  • Dietz K (1974) Transmission and control of arbovirus diseases. In: Ludvig D, Cooke KL (eds) Proceedings of SIMS conference on epidemiology, Alta, Utah, 8–12 July, pp 104–121

  • Duvallet G (2006) Parasites, vecteurs de pathogènes et changements climatiques. Hydroécologie Appliqueé 15:87–96

    Article  Google Scholar 

  • Eisenberg JNS, Brookhart MA, Rice G, Brown M, Colford JM Jr (2002) Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect 110:783–790

    Google Scholar 

  • Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE, Martens WJM, Mosley-Thompson E, Susskind J (1998) Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc 79:409–417

    Article  Google Scholar 

  • Favier C, Degallier N, Dubois MA, Boulanger J-P, Menkes CE, Torres L (2005a) Dengue epidemic modeling: stakes and pitfalls. Asia Pacific Biotech News 9:1191–1194

    Google Scholar 

  • Favier C, Schmit D, Müller-Graf C, Cazelles B, Degallier N, Mondet B, Dubois MA (2005b) Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc R Soc B 272:1171–1177

    Article  Google Scholar 

  • Favier C, Degallier N, Vilarinhos PdTR, Carvalho MdSLd, Yoshizawa MAC, Knox MB (2006) Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasilia (DF, Brazil). Trop Med Int Health 11:1104–1118

    Article  Google Scholar 

  • Focks DA (1988) Quantitative models of arbovirus infection. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol I. CRC, Boca Raton, pp 311–318

    Google Scholar 

  • Focks DA, Alexander N, Villegas E, Romero-Vivas CME, Midega JT, Bisset J, Morrison AC, Barrera R, Barbazan P, Nam VS, Arredondo-Jiménez JI (2006) Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations, vol TDR/IRM/Den/06.1. WHO/TDR, Genève

    Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull WHO 78:1136–1147

    Google Scholar 

  • Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103

    Article  Google Scholar 

  • Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109(Supplement 2):223–233

    Article  Google Scholar 

  • Guzmán MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2:33–42

    Article  Google Scholar 

  • Hales S, Weinstein P, Souares Y, Woodward A (1999) El Nino and the dynamics of vector borne disease transmission. Environ Health Perspect 107:99–102

    Article  Google Scholar 

  • Hales S, Wet Nd, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  Google Scholar 

  • Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415:905–909

    Article  Google Scholar 

  • Heukelbach J, Oliveira FASd, Kerr-Pontes LRS, Feldmeier H (2001) Risk factors associated with an outbreak of dengue fever in a favela in Fortaleza, north-east Brazil. Trop Med Int Health 6:635–642

    Article  Google Scholar 

  • Hopp MJ, Foley JA (2001) Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change 48:441–463

    Article  Google Scholar 

  • Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res 25:85–94

    Article  Google Scholar 

  • Kay B, Nam VS (2005) New strategy against Aedes aegypti in Vietnam. Lancet 365:613–617

    Google Scholar 

  • Kolivras KN (2006) Mosquito habitat and dengue risk potential in Hawaii: a conceptual framework and GIS application. Prof Geogr 58:139–1554

    Article  Google Scholar 

  • Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362:1481–1489

    Article  Google Scholar 

  • Kuhn K, Campbell-Lendrum D, Haines A, Cox J (2005) Using climate to predict infectious disease epidemics, vol. World Health Organization, Genève

    Google Scholar 

  • Lieshout Mv, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14:87–99

    Article  Google Scholar 

  • Lifson AR (1996) Mosquitoes, models, and dengue. Lancet 347:1201

    Article  Google Scholar 

  • Maelzer D, Hales S, Weinstein P, Zalucki M, Woodward A (1999) El Niño and arboviral disease prediction. Environ Health Perspect 107:1–3

    Article  Google Scholar 

  • Mairuhu ATA, Wagenaar J, Brandjes DMP, Gorp ECMv (2004) Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis 23:425–433

    Article  Google Scholar 

  • Martens WJM, Jetten TH, Focks DA (1997) Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change 35:145–156

    Article  Google Scholar 

  • Marzochi KBF (1994) Dengue in Brazil—situation, transmission and control—a proposal for ecological control. Mem Inst Oswaldo Cruz 89:235–245

    Article  Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869

    Article  Google Scholar 

  • Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN (2005) A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus 57A:464–475

    Google Scholar 

  • Nakhapakorn K, Tripathi NK (2005) An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr 4:13

    Article  Google Scholar 

  • Nishiura H, Inaba H (2007) Discussion: emergence of the concept of the basic reproduction number from mathematical demography. J Theor Biol 244:357–364

    Article  Google Scholar 

  • Nogueira LA, Gushi LT, Miranda JE, Madeira NG, Ribolla PEM (2005) Application of an alternative Aedes species (Diptera: Culicidae) surveillance method in Botucatu city, São Paulo, Brazil. Am J Trop Med Hyg 73:309–311

    Google Scholar 

  • Norris DE (2004) Mosquito-borne diseases as a consequence of land use change. EcoHealth 1:19–24

    Article  Google Scholar 

  • Oreskes N (2004) The scientific consensus on climate change. Science 306:1686

    Article  Google Scholar 

  • Otero M, Solari HG, Schweigmann N (2005) A stochastic population dynamics model for Aedes aegypti formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  Google Scholar 

  • Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109:141–161

    Article  Google Scholar 

  • Rogers DJ, Wilson AJ, Hay SI, Graham AJ (2006) The global distribution of yellow fever and dengue. Adv Parasitol 62:181–220

    Article  Google Scholar 

  • Shope RE (1992) Impacts of global climate change on human health: spread of infectious disease. In: Majumdar SK, Kalkstein LS, Yarnal B, Miller EW, Rosenfeld LM (eds) Global climate change: implications, challenges and mitigation measures. The Pennsylvania Academy of Science, Easton, pp 363–370

    Google Scholar 

  • Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17:136–173

    Article  Google Scholar 

  • Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579

    Article  Google Scholar 

  • Unnasch RS, Sprenger T, Katholi CR, Cupp EW, Hill GE, Unnasch TR (2005) A dynamic transmission model of eastern equine encephalitis virus. Ecol Model 192:425–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Degallier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degallier, N., Favier, C., Menkes, C. et al. Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission. Climatic Change 98, 581–592 (2010). https://doi.org/10.1007/s10584-009-9747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9747-3

Keywords

Navigation