Skip to main content

Advertisement

Log in

A history of ENSO events since A.D. 1525: implications for future climate change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Reconstructions of past climate are important for providing a historical context for evaluating the nature of 20th century climate change. Here, a number of percentile-based palaeoclimate reconstructions were used to isolate signals of both phases of El Niño–Southern Oscillation (ENSO). A total of 92 (82) El Niño (La Niña) events were reconstructed since A.D. 1525. Significantly, we introduce the most comprehensive La Niña event record compiled to date. This annual record of ENSO events can now be used for independent verification of climate model simulations, reconstructions of ENSO indices and as a chronological control for archaeologists/social scientists interested in human responses to past climate events. Although extreme ENSO events are seen throughout the 478-year ENSO reconstruction, approximately 43% of extreme and 28% of all protracted ENSO events (i.e. both El Niño and La Niña phase) occur in the 20th century. The post-1940 period alone accounts for 30% of extreme ENSO years observed since A.D. 1525. These results suggest that ENSO may operate differently under natural (pre-industrial) and anthropogenic background states. As evidence of stresses on water supply, agriculture and natural ecosystems caused by climate change strengthens, studies into how ENSO will operate under global warming should be a global research priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan R (2000) ENSO and climatic variability in the past 150 years. In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 3–35

    Google Scholar 

  • Allan R, D’Arrigo R (1999) ‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Niño? Holocene 9(1):101–118

    Google Scholar 

  • Allan R, Lindsay J, Parker D (1996) El Niño Southern Oscillation and climate variability. CSIRO, Melbourne, Australia

    Google Scholar 

  • Baumgartner T, Michaelsen J, Thompson L, Shen G, Soutar A, Casey R (1989) The recording of interannual climatic change by high-resolution natural systems: tree rings, coral bands, glacial ice layers and marine varves. Aspects of climate variability in the Pacific and Western Americas. Geophysical monograph. Peterson, D. Washington. American Geophysical Union 55:1–14

    Google Scholar 

  • Berlage H (1931) On the relationship between thickness of tree rings of Djati and rainfall on Java. Tectona 24:939–953

    Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus XVIII:820–829

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Google Scholar 

  • Boswijk G, Fowler A, Lorrey A, Palmer J, Ogden J (2006) Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. Holocene 16(2):188–199

    Google Scholar 

  • Bouma M, Kovats R, Goubet S, Cox J, Haines A (1997) Global assessment of El Niño’s disaster burden. Lancet 350:1435–1438

    Google Scholar 

  • Bradley R (1996) Are there optimum sites for global paleotemperature reconstruction? In: Jones P, Bradley R, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer-Verlag, Berlin, pp 603–624

    Google Scholar 

  • Braganza K, Gergis J, Power S, Risbey J, Fowler A (2008) A new Pacific basin-wide index of El Niño-Southern Oscillation, A.D.1525-1982. Centre for Australian Weather and Climate Research (CAWCR) Technical Report No. 3, CAWCR, Melbourne, Australia

  • Cane M (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 164:1–14

    Google Scholar 

  • Cane M, Braconnot P, Clement A, Gildor H, Joussaume S, Kageyama M, Khodri M, Paillard D, Tett S, Zorita E (2006) Progress in paleoclimate modeling. J Climate 19:5031–5057

    Google Scholar 

  • Caviedes C (2001) El Niño in history: storming throughout the ages. University of Florida, Gainesville, USA

    Google Scholar 

  • Chen C, Mc Carl B, Adams R (2001) Economic implications of potential ENSO frequency and strength shifts. Clim Change 49:147–159

    Google Scholar 

  • Cleaveland M, Stahle D, Therrell M, Villanueva-Diaz J, Burns B (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Clim Change 59:369–388

    Google Scholar 

  • Clement A, Cane M, Seager R (2001) An orbitally driven tropical source for abrupt climate change. J Climate 14(11):2369–2375

    Google Scholar 

  • Cobb K, Charles C, Cheng H, Edwards L (2003) El Niño/Southern Oscillation and tropical pacific climate during the last millenium. Nature 424:271–276

    Google Scholar 

  • Cole J, Dunbar R, Mc Clanahan T, Muthiga N (2000) Tropical pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries. Science 287(5453):617–619

    Google Scholar 

  • Collins M (2005) El Niño or La Niña-like climate change? Clim Dyn 24:89–104

    Google Scholar 

  • Cook E, Seager R, Cane M, Stahle D (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134

    Google Scholar 

  • Crowley T (2000) Causes of climate change over the past 1,000 years. Science 289:270–277

    Google Scholar 

  • D’Arrigo R, Wilson R (2008) El Niño and Indian Ocean influences on Indonesian drought: implications for forecasting rainfall and crop productivity. Int J Climatol 28(5):611–616. doi:10.1002/joc.1654

    Google Scholar 

  • D’Arrigo R, Jacoby G, Krusic P (1994) Progress in dendroclimatic studies in Indonesia. Terrestrial, Atmospheric and Oceanographic Sciences 5:349–363

    Google Scholar 

  • D’Arrigo R, Cook E, Wilson R, Allan R, Mann M (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32(L03711):1–4

    Google Scholar 

  • D’Arrigo R, Wilson R, Palmer J, Krusic P, Curtis A, Sakulich J, Bijaksana S, Zulaikah S, Ngkoimani L, Tudhope A (2006) The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: linkages to Asian monsoon drought and El Niño–Southern Oscillation. Paleoceanography 21(PA3005):PA3005/1-PA3005/13

  • Dean (1993) IGBP pages/WDC-A for paleoclimatology contribution series 1993–021

  • Deser C, Wallace J (1987) El Niño events and their relation to the Southern Oscillation: 1925–1986. J Geophys Res 92:14189–14196

    Google Scholar 

  • Diaz H, Pulwarty R (1994) An analysis of the time scales of variability in centuries-long ENSO-sensitive records in the last 1000 years. Clim Change 26:317–342

    Google Scholar 

  • Diaz H, Markgraf V (2000) El Niño and the Southern oscillation; multiscale variability and global and regional impacts. Cambridge University Press, Cambridge

    Google Scholar 

  • Dunbar R, Cole J (1999) Annual records of tropical systems (ARTS); recommendations for research. IGBP Science Series, Geneva, Switzerland

    Google Scholar 

  • Dunbar R, Wellington G, Colgan M, Glynn P (1994) Eastern Pacific sea surface temperature since 1600 AD: the d18O record of climate variability in Galapagos corals. Paleoceanography 9:291–316

    Google Scholar 

  • Eddy J (1977) Climate and the changing sun. Clim Change 1:173–190

    Google Scholar 

  • Fedorov A, Philander G (2000) Is El Niño changing? Science 288:1997–2002

    Google Scholar 

  • Fenwick P (2003) Reconstruction of past climates using pink pine (Halocarpus biformus) tree-ring chronologies. Soil Plant and Ecological Sciences, Lincoln University, Christchurch, New Zealand

  • Folland C, Karl T, Christy J, Clarke R, Gruza G, Jouzel J, Mann M, Oerlemans J, Salinger M, Wang S (2001) Observed climate variability and change. In: Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York

    Google Scholar 

  • Fowler A (2005) Mean sea-level pressure composite mapping dendroclimatology: advocacy and an Agathis australis (kauri) case study. Clim Res 29:73–84

    Google Scholar 

  • Fowler A (2008) ENSO history recorded in Agathis australis (kauri) tree-rings Part B: 422 years of ENSO robustness. Int J Climatol 28(1):21–35

    Google Scholar 

  • Fowler A, Boswijk G (2003) Chronology stripping as a tool for enhancing the statistical quality of tree-ring chronologies. Tree Ring Research 59(2):53–62

    Google Scholar 

  • Fowler A, Palmer J, Salinger J, Ogden J (2000) Dendroclimatic interpretation of tree-rings in Agathis australis (Kauri) 2; evidence of a significant relationship with ENSO. J R Soc N Z 30(3):277–292

    Google Scholar 

  • Fowler A, Boswijk G, Ogden J (2004) Tree-ring studies on Agathis australis (Kauri): a synthesis of development work on late Holocene chronologies. Tree Ring Research 60(1):15–29

    Google Scholar 

  • Fowler A, Boswijk G, Gergis J, Lorrey A (2008) ENSO history recorded in Agathis australis (Kauri) tree-rings Part A: Kauri’s potential as an ENSO proxy. Int J Climatol 28(1):1–20

    Google Scholar 

  • Gagan M, Ayliffe L, Beck J, Cole J, Druffel E, Dunbar R, Schrag D (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64

    Google Scholar 

  • Gedalof Z, Mantua N (2002) A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophys Res Lett 29(24):57/1–57/3

    Google Scholar 

  • Gergis J (2006) Reconstructing El Niño-Southern Oscillation; evidence from tree-ring, coral, ice and documentary palaeoarchives, A.D. 1525–2002. PhD Thesis, School of Biological, Earth and Environmental Sciences. Sydney, University of New South Wales, Australia

  • Gergis J, Fowler A (2005) Classification of synchronous oceanic and atmospheric El Niño–Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int J Climatol 25:1541–1565

    Google Scholar 

  • Gergis J, Fowler A (2006) How unusual was late twentieth century El Niño–Southern Oscillation (ENSO)? Assessing evidence from tree-ring, coral, ice and documentary archives, A.D. 1525–2002. Advances in Geosciences 6:173–179

    Article  Google Scholar 

  • Gergis J, Boswijk G, Fowler A (2005a) An update of modern Northland Kauri (Agathis australis) tree-ring chronologies 1: Puketi State forest. New Zealand tree-ring Site Report No.19, School of Geography and Environmental Science Working Paper 29, University of Auckland, New Zealand

    Google Scholar 

  • Gergis J, Boswijk G, Fowler A (2005b) An update of modern Northland Kauri (Agathis australis) tree-ring chronologies 2: Trounson Kauri Park. New Zealand tree-ring Site Report No.20, School of Geography and Environmental Science Working Paper 30, University of Auckland, New Zealand

    Google Scholar 

  • Gergis J, Braganza K, Fowler A, Risbey J, Mooney S (2006) Reconstructing El Niño–Southern Oscillation (ENSO) from high-resolution palaeoarchives. J Quat Sci 21(7):707–722

    Google Scholar 

  • Goddard L, Dilley M (2005) El Niño: catastrophe or opportunity. J Climate 18:651–665

    Google Scholar 

  • Goodwin I, Van Ommen T, Curran M, Mayewski P (2004) Mid latitude winter climate variability in the South Indian and Southwest Pacific regions since 1300 AD. Clim Dyn 22:783–794

    Google Scholar 

  • Greybill (1994) IGBP pages/WDC-A for paleoclimatology contribution series 1994–003

  • Grissino-Mayer, Swetnam (1992) IGBP Pages/WDC-A for paleoclimatology contribution series 1992–012

  • Grove R, Chappell J (2000) El Niño chronology and the history of global crises during the little ice age. In: Grove R, Chappell J (eds). El Niño-history and crisis. White Horse, Cambridge, pp 5–34

    Google Scholar 

  • Grow (2000) IGBP pages/WDC-A for paleoclimatology contribution series 2003–094

  • Haberle S, Hope G, van der Kaars S (2001) Biomass burning in Indonesia and Papua New Guineas: natural and human induced fire events in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 171:259–268

    Google Scholar 

  • Hanley D, Bourassa M, O’Brian J, Smith S, Spade E (2003) A quantitative evaluation of ENSO indices. J Climate 16:1249–1258

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea D, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288–14293

    Google Scholar 

  • Hassan F (1981) Historical Nile floods and their implications for climatic change. Science 212:1142–1145

    Google Scholar 

  • Hendy E, Gagan M, Alibert C, McCulloch M, Lough J, Isdale P (2002) Abrupt decrease in tropical Pacific sea surface salinity at the end of the little ice age. Science 295:1511–1514

    Google Scholar 

  • Hendy E, Gagan M, Lough J (2003) Chronological control of coral records using luminescent lines and evidence for non-stationarity ENSO teleconnections in northeastern Australia. Holocene 13(2):187–199

    Google Scholar 

  • Hennessy K, Fitzharris B, Bates B, Harvey N, Howden S, Hughes L, Salinger J, Warrick R (2007) Australia and New Zealand. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Holmes R, Adams R, Fritts H (1986) Users manual for program ARSTAN. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. University of Arizona, Tucson, pp 50–65

  • Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. SpringerVerlag, New York

    Google Scholar 

  • Jones P, Bradley R (1992) Climate variations over the last 500 years. In: Bradley R, Jones P (eds) Climate since A.D. 1500. Routledge, London, pp 649–665

    Google Scholar 

  • Jones P, Mann M (2004) Climate over past millennia. Rev Geophys 42:1–42

    Google Scholar 

  • Kiladis G, Diaz H (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Climate 2:1069–1090

    Google Scholar 

  • Kovats R, Bouma M, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362(9394):1481–1489

    Google Scholar 

  • Kuhnel I, Coates L (2000) El Niño–Southern Oscillation: related probabilities of fatalities from natural perils in Australia. Nat Hazards 22:117–138

    Google Scholar 

  • Kumar A, Hoerling M (1997) Interpretation and implications of the observed inter-El Niño variability. J Climate 10:83–91

    Google Scholar 

  • Lamb S (1982) Climate, history and the modern world. Routledge, London

    Google Scholar 

  • Linsley B, Wellington G, Schrag D (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science 290:1145–1149

    Google Scholar 

  • Linsley B, Wellington G, Schrag D, Ren L, Salinger J, Tudhope A (2004) Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Clim Dyn 22:1–11

    Google Scholar 

  • Lough J (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204:115–143

    Google Scholar 

  • Lough J (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22 (PA2218). doi:10.1029/2006PA001377

  • Lyon B, Barnston A (2005) The evolution of the weak El Niño of 2004–2005. US CLIVAR Variations 3(2):1–4

    Google Scholar 

  • Mann M (2003) On past temperatures and anomalous late-20th century warmth. Eos 84(27):1–3

    Google Scholar 

  • Mann M, Bradley R, Hughes M (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Google Scholar 

  • Mann M, Bradley R, Hughes M (2000) Long-term variability in the El Niño/Southern Oscillation and associated teleconnections. In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation; multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 327–372

    Google Scholar 

  • Mann M, Cane M, Zebiak S, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Climate 18:447–456

    Google Scholar 

  • Markgraf V, Diaz H (2000) The past-ENSO record; a review. In: Markgraf V, Diaz, H (eds) El Niño and the Southern Oscillation; multiscale variability and global and regional impacts. Cambridge University Press, New York, pp 465–488

    Google Scholar 

  • Mc Donald J, Drysdale R, Hill D (2004) The 2002–2003 El Niño recorded in Australian cave drip waters: implications for reconstructing rainfall histories using stalagmites. Geophys Res Lett 31:L22202/1–L22202/4

    Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Mendelssohn R, Bogard S, Schwing F, Palacious D (2005) Teaching old indices new tricks: a state-space analysis of El Niño related climate indices. Geophys Res Lett 32:L07709/1–L07709/4

    Google Scholar 

  • Mullan A (1995) On the linearity and stability of Southern Oscillation–climate relationships for New Zealand. Int J Climatol 15:1365–1386

    Google Scholar 

  • Murphy J, Whetton P (1989) A re-analysis of a tree-ring chronology from Java. Proc K Ned Akad Wet (Dendrochronology) Proceedings B 92(3):241–257

    Google Scholar 

  • Ortlieb L (2000) The documentary historical record of El Niño events in Peru: an update of the Quinn record (sixteenth through nineteenth centuries). In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation: variability, global and regional impacts. Cambridge University Press, Cambridge, pp 207–295

    Google Scholar 

  • Patz J, Campbell-Lendrum D, Holloway T, Foley J (2005) Impact of regional climate change on human health. Nature 438:310–317

    Google Scholar 

  • Power S, Maylock M, Colman R, Wang X (2006) The predictability of inter-decadal changes in ENSO activity and ENSO teleconnections. J Climate 19:4755–4771

    Google Scholar 

  • Quinn W, Neal V (1992) The historical record of El Niño events. In: Bradley R, Jones P (eds) Climate since A.D. 1500. Routledge, London, pp 623–648

    Google Scholar 

  • Quinn W, Neal V, Antunez de Mayola S (1987) El Niño occurrences over the past four and a half centuries. J Geophys Res 92(C13):14449–14461

    Google Scholar 

  • Quinn T, Crowley T, Taylor F, Henin C, Joannot P, Join Y (1998) A multicentury stable isotope record from a New Caledonia coral: interannual and decadal SST variability in the southwest Pacific since 1657. Paleoceanography 13(4):412–426

    Google Scholar 

  • Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Google Scholar 

  • Rasmusson E, Carpenter T (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528

    Google Scholar 

  • Reid G (1997) Solar forcing of global climate change since the mid 17th century. Clim Change 37:391–405

    Google Scholar 

  • Rodbell D, Seltzer G, Anderson D, Abbott M, Enfield D, Newman J (1999) An ~15 000-year record of El Niño driven alluviation in southwestern Ecuador. Science 283:516–520

    Google Scholar 

  • Salinger M, Renwick J, Mullan A (2001) Interdecadal Pacific oscillation and South Pacific climate. Int J Climatol 21:1705–1721

    Google Scholar 

  • Solow A (2006) An ENSO shift revisited. Geophys Res Lett 33(L22602):L22602/1–L22602/3

    Google Scholar 

  • Stahle D, Cleaveland M (2002) IGBP pages/WDC-A for paleoclimatology contribution series 2002–004

  • Stahle D, D’Arrigo R, Krusic P, Cleaveland M, Cook E, Allan R, Cole J, Dunbar R, Therrell M, Gay D, Moore M, Stokes M, Burns B, Villanueva-Diaz J, Thompson L (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79(10):2137–2152

    Google Scholar 

  • Thompson L (1992) IGBP pages/WDC-A for paleoclimatology contribution series 1992–008

  • Thompson L (2000) Ice core evidence for climate change in the tropics: implications for our future. Quat Sci Rev 19:19–35

    Google Scholar 

  • Thompson L, Mosley-Thompson E, Henderson K (2000) Ice-core palaeoclimate records in tropical South America since the last glacial maximum. J Quat Sci 15(4):377–394

    Google Scholar 

  • Thompson L, Mosley-Thompson E, Davis M, Henderson K, Brecher H, Zagorodnov V, Mashiotta T, Lin P, Mikhalenko V, Hardy D, Beer J (2002) Kilimanjaro ice core records: evidence of Holocenee climate change in tropical Africa. Science 298:589–593

    Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Google Scholar 

  • Trenberth K (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777

    Google Scholar 

  • Trenberth K, Hoar T (1996) The 1990–1995 El Niño Southern oscillation event: longest on record. Geophys Res Lett 23(1):57–60

    Google Scholar 

  • Trenberth K, Hoar T (1997) El Niño and climate change. Geophys Res Lett 24(23):3057–3060

    Google Scholar 

  • Trenberth K, Stepaniak D (2001) Indices of El Niño evolution. J Climate 14:1697–1701

    Google Scholar 

  • Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick J, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquiz M, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York

    Google Scholar 

  • Urban F, Cole J, Overpeck J (2000) Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407:989–993

    Google Scholar 

  • Von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang S, Zhao Z (1981) Droughts and floods in China,1470–1979. In: Wigley T, Ingrasham M, Farmer G (eds) Climate and history. Cambridge University Press, Cambridge, pp 171–288

    Google Scholar 

  • Whetton P, Rutherfurd I (1994) Historical ENSO teleconnections in the eastern hemisphere. Clim Change 28:221–253

    Google Scholar 

  • Whetton P, Allan R, Rutherfurd I (1996) Historical ENSO teleconnections in the Eastern Hemisphere: comparisons with latest El Niño series of Quinn. Clim Change 32:103–109

    Google Scholar 

  • Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111(C10007):C10007/1–C10007/13

    Google Scholar 

  • Wolter K, Timlin M (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th climate diagnostics workshop, Norman Oklahoma, NOAA/NMC/CAC, pp 52–57

  • Zhang Y, Wallace J, Battisti D (1997) ENSO-like interdecadal variability: 1900–1993. J Climate 10:1004–1020

    Google Scholar 

  • Zhang R, Rothstein L, Busalacchi A (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–883

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle L. Gergis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gergis, J.L., Fowler, A.M. A history of ENSO events since A.D. 1525: implications for future climate change. Climatic Change 92, 343–387 (2009). https://doi.org/10.1007/s10584-008-9476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9476-z

Keywords

Navigation