Skip to main content

Advertisement

Log in

Biological Impacts of Climatic Change on a Beringian Endemic: Cryptic Refugia in the Establishment and Differentiation of the Rock Sandpiper (Calidris Ptilocnemis)

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The importance of climatic change on the establishment and differentiation of high-latitude species is largely unknown. Biological effects of historic climate change can be determined from historic signals in genetic data. The rock sandpiper (Calidris ptilocnemis) is a good test case for examining these biological effects because it has a known sister species, the purple sandpiper (Calidris maritima), and it is the only endemic Beringian bird with multiple described subspecies, suggesting a process of initial establishment and subsequent differentiation in the high-latitude regions of Beringia. We sequenced 2,074 bp of mitochondrial DNA from 40 rock sandpipers from nine breeding locations and four purple sandpipers. We used phylogenetic and coalescence methods to reconstruct trees and to evaluate the population demography, migration rates, and relative times of population divergence. Phylogenetic trees show that purple and rock sandpipers are monophyletic sister species. Within the rock sandpiper, clade branching patterns and coalescence estimates suggest that there were multiple refugial populations in Beringia, which correspond loosely to different glacial cycles. Rock sandpipers show the establishment, persistence, and accumulation of partitioned genetic diversity across several glacial cycles, implicating the presence of multiple cryptic biological refugia in this region through repeated cycles of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Ornithologists’ Union.: 1910, Check-list of North American Birds, 3rd edn. American Ornithologists’ Union, New York.

    Google Scholar 

  • American Ornithologists’ Union.: 1931, Check-list of North American Birds, 4th edn. American Ornithologists’ Union, Lancaster.

    Google Scholar 

  • American Ornithologists’ Union.: 1957, Check-list of North American Birds, 5th edn. American Ornithologists’ Union, Baltimore.

    Google Scholar 

  • Avise, J. C.: 2000, Phylogeography. Harvard University Press,Cambridge

    Google Scholar 

  • Borowik, O. A.: 1996, Molecular Systematics and the Evolution of Mating Systems in Calidridine Sandpipers. Doctor of philosophy dissertation, University of Toronto.

  • Borowik, O. A. and McLennan, D. A.: 1999, ‘Phylogenetic Patterns of Parental Care in Calidridine Sandpipers’, Auk116, 1107–1117.

    Google Scholar 

  • Congdon, B. C., Piatt, J. F., Martin, K., and Friesen, V. L.: 2000, ‘Mechanisms of Population Differentiation in Marbled Murrelets: Historical Versus Contemporary Processes’, Evolution54, 974–986.

    Google Scholar 

  • del Hoyo, J., Elliott, A., and Sargatal, J. eds.: 1996, Handbook of the Birds of the World, Vol.3. Hoatzins to Auks. Lynx Editions, Barcelona.

  • Edwards, S. V. and Beerli, P.: 2000, ‘Gene Divergence, Population Divergence, and the Variance in Coalescence Time in Phylogeographic Studies’, Evolution54, 1839–1854.

    CAS  PubMed  Google Scholar 

  • Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C.: 1995a, ‘Testing Significance of Incongruence’, Cladistics10, 315–319.

    Google Scholar 

  • Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C.: 1995b, ‘Constructing a Significance Test for Incongruence’, Syst. Biol.44, 570–572.

    Google Scholar 

  • Fay, F. H. and Cade, T. J.: 1959, ‘An Ecological Analysis of the Avifauna of St. Lawrence Island, Alaska’, Univ. California Publ. Zoology63, 73–150.

    Google Scholar 

  • Fedorov, V. B. and Stenseth, N. C.: 2002, ‘Multiple Glacial Refugia in the North American Arctic: Inference from Phylogeography of the Collared Lemming Dicrostonyxgroenlandicus’, Proc. Royal Soc. London Ser. B269 2071–2078.

    Google Scholar 

  • Felsenstein, J.: 1985, ‘Confidence Limits on Phylogenies: an Approach Usingthe Bootstrap’, Evolution29, 783–791.

    Google Scholar 

  • Fleischer, R. C. and McIntosh, C. E., and Tarr, C. L.: 1998, ‘Evolution on a Volcanic Conveyor Belt: Using Phylogeographic Reconstructions and K-Ar-Based Ages of the Hawaiian Islands to Estimate Molecular Evolutionary Rates’,Mol. Ecol.7, 533–545.

    Google Scholar 

  • Gibson, D. D. and Kessel, B.: 1992, ‘Seventy-Four New Avian Taxa Documentedin Alaska 1976–1991’, Condor94, 454–467.

    Google Scholar 

  • Gibson, D. D. and Kessel, B.: 1997, ‘Inventory of the Species and Subspecies of Alaska Birds’, West. Birds28, 45–95.

    Google Scholar 

  • Gill, R. E., Tomkovich, P. S., and McCaffery, B. J.: 2003, ‘Rock Sandpiper’,in A. Poole and F. Gill eds., Birds of North America, No. 686, The Birds of North America Inc., Philadelphia.

    Google Scholar 

  • Glenn, T.: 1997, Genetic Bottlenecks in Long-Lived Vertebrates: Mitochondrial and Microsatellite DNA Variation in American Alligators and Whooping Cranes. Doctor of Philosophy dissertation, University of Maryland.

  • Griswold, C. K. and Baker, A. J.: 2002, ‘Time to the Most Recent Common Ancestor and Divergence Times of Populations of Common Chaffinches (Fringilla coelebs) in Europe and North Africa: Insights into Pleistocene Refugia and Current Levels of Migration’, Evolution 56, 143–153.

    Google Scholar 

  • Hackett, S. J. 1996 ‘Molecular Phylogenetics and Biogeography of Tanagers in the Genus Ramphocelus Aves’, Mol. Phylogen. Evol.5 368–382.

    Google Scholar 

  • Hamilton, T. D., Reed, K. M., and Thorsen, R. M. 1986. Glaciation in Alaska. Alaska Geological Society, Anchorage.

    Google Scholar 

  • Harding, R. M. 1996 ‘New Phylogenies: An Introductory Look at the Coalescent’, in Harvey, P.H. et al. eds., New Uses for New Phylogenies, Oxford University Press, pp. 15–22.

  • Harshman, J.: 1996, Phylogeny, Evolutionary Rates, and Ducks. Doctor of Philosophy Dissertation, University of Chicago.

  • Hartl, D. L. and Clark, A. G.: 1997, Principles of Population Genetics, 3rd edn., Sinauer,Sunderland.

    Google Scholar 

  • Hasegawa, M. H., Kishino, H., and Yano, T.: 1985, ‘Dating of the Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA’, J. Mol. Evol.21 160–174.

    Google Scholar 

  • Hayman, P., Marchant, J., and Prater, T.: 1986, Shorebirds: An Identification Guide to the Waders of the World, Houghton Mifflin Co., Boston.

    Google Scholar 

  • Hewitt, G.: 2000, ‘The Genetic Legacy of the Quaternary Ice Ages’, Nature405, 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Holder, K., Montgomerie, R., and Friesen, V. L.: 1999, ‘A Test of the Glacial Refugium Hypothesis Using Patterns of Mitochondrial and Nuclear DNA Sequence Variation in Rock Ptarmigan Lagopus mutus’, Evolution53, 1936–1950.

    CAS  Google Scholar 

  • Hopkins, D. M.: 1967, ‘The Cenozoic History of Beringia–A Synthesis’, in D. M. Hopkins ed., The Bering Land Bridge, Stanford University Press, Stanford, pp. 451–484.

    Google Scholar 

  • Hopkins, D. M., Matthews, J. V., Schweger, C. E., and Young, S. B.: 1982, Paleoecology of Beringia, Academic Press, New York.

    Google Scholar 

  • Huelsenbeck, J. P. and Ronquist, F.: 2001, ‘MR-BAYES: Bayesian Inference of Phylogeny’, Bioinformatics17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K. P. and Sorenson, M. D.: 1998, ‘Comparing Molecular Evolution in Two Mitochondrial Protein Coding Genes Cytochrome b and ND2 in the Dabbling Ducks Tribe: Anatini’, Mol. Phylogen. Evol.10, 82–94.

    Google Scholar 

  • Johnson, K. P. and Clayton, D. H.: 2000, ‘A Molecular Phylogeny of the Dove Genus Zenaida: Mitochondrial and Nuclear DNA Sequences’, Condor102, 864–870.

    Google Scholar 

  • Kimura, M.: 1983, The Neutral Theory of Molecular Evolution,Cambridge University Press, Cambridge.

    Google Scholar 

  • Klicka, J. and Zink, R. M.: 1997, ‘The Importance of Recent ice Ages in Speciation: A Failed Paradigm’, Science277, 1666–1669.

    Google Scholar 

  • Kornegay, J. R., Kocher, T. D., Williams, L. A., and Wilson, A. C.: 1993, ‘Pathways of Lysozyme Evolution Inferred from the Sequences of Cytochrome b in Birds’, J. Mol. Evol.37, 367–379.

    Google Scholar 

  • Krajewski, C. and D. G. King.: 1996, ‘Molecular Divergence and Phylogeny: Rates and Patterns of Cytochrome b Evolution in Cranes’, Mol. Biol. Evol.13, 21–30.

    Google Scholar 

  • Larget, B. and Simon, D. L.: 1999, ‘Markov Chain Monte Carlo Algorithms forthe Bayesian Analysis of Phylogenetic Trees’, Mol. Biol. Evol.16, 750–759.

    Google Scholar 

  • Muira, G. I. and Edwards, S. V.: 2001, ‘Cryptic Differentiation and Geographic Variation in Genetic Diversity of Hall’s Babbler, Pomastostomus halli’J. Avian Biol.32, 102–110.

    Google Scholar 

  • Murie, O. J.: 1959, Fauna of the Aleutian Islands and Alaska Peninsula, North American Fauna No. 61, US Fish and Wildlife Service, Washington DC.Murie, O. J. 1959. Fauna of the Aleutian Islands and Alaska Peninsula, North American Fauna No. 61, US Fish and Wildlife Service, Washington DC.Murie, O. J.: 1959, Fauna of the Aleutian Islands and Alaska Peninsula, North American Fauna No. 61, US Fish and Wildlife Service, Washington DC.Murie, O. J. 1959. Fauna of the Aleutian Islands and Alaska Peninsula, North American Fauna No. 61, US Fish and Wildlife Service, Washington DC.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S.: 2001, ‘Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics’, Science294, 2348–2351.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, R. and Wakeley, J.: 2001, ‘Distinguishing Migration from Isolation:A Markov Chain Monte Carlo Approach’, Genetics158, 885–896.

    CAS  PubMed  Google Scholar 

  • Nunn, G. B., Cooper, J., Jouventin, P., Robertson, C. J. R., and G. G. Robertson.: 1996, ‘Evolutionary Relationships Among Extant Albatrosses Procellariiformes: Diomedeidae Established from Complete Cytochrome-b Gene Sequences’, Auk113, 784–801.

    Google Scholar 

  • Peters, J. L.: 1934, Check-list of the Birds of the World, Harvard University Press, Cambridge.

    Google Scholar 

  • Pielou, E. C.: 1991, After the Ice Age, University of Chicago Press, Chicago.

    Google Scholar 

  • Posada, D. and Crandall, K. A.: 1998, ‘Modeltest: Testing the Model of DNA Substitution’, Bioinformatics14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Rand, D. M.: 1996, ‘Neutrality Tests of Molecular Markers and the Connection Between DNA Polymorphism, Demography, and Conservation Biology’, Cons. Biol10, 665–671.

    Google Scholar 

  • Randi, E.: 1996, ‘A Mitochondrial Cytochrome b Phylogeny of the Alectoris Partridges’, Mol. Phylogen. Evol.6, 214–227.

    Google Scholar 

  • Rannala, B. and Yang, Z.: 1996, ‘Probability Distribution of Molecular Evolutionary Trees: A New Method of Phylogenetic Inference’, J. Mol. Evol.43, 304–311.

    Google Scholar 

  • Rogers, A. R.: 1995, ‘Genetic Evidence for a Pleistocene Population Explosion’, Evolution49, 608–615.

    Google Scholar 

  • Rogers, A. R. and Harpending, H.: 1992, ‘Population Growth Makes Waves in the Distribution of Pairwise Genetic Distances’, Mol. Biol. Evol.9, 552–569.

    Google Scholar 

  • Schneider, S., Kueffer, J., Roessli, D., and Excoffier, L.: 1997, Arlequin ver. 1.1: A Software for Population Genetic Data Analysis, Genetics and Biometry Laboratory, University of Geneva, Geneva.

    Google Scholar 

  • Shields, G. F. and Wilson, A. C.: 1987, ‘Calibration of Mitochondrial DNA Evolution in Geese’, J. Mol. Evol.24, 212–217.

    Google Scholar 

  • Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., and Mindell, D. P.:1999, ‘Primers for a PCR-Based Approach to Mitochondrial Genome Sequencing in Birds and Other Vertebrates’, Mol. Phylogen. Evol.12, 105–114.

    Google Scholar 

  • Stewart, J. R. and Lister, A. M.: 2001, ‘Cryptic Northern Refugia and the Origins of the Modern Biota’, Trends Ecol. Evol.16, 608–613.

    Google Scholar 

  • Swofford, D. L.: 2001, Phylogenetic Analysis using Parsimony and other methods, ver. 4.0b10,Sinauer, Sunderland.

    Google Scholar 

  • Taberlet, P. and Cheddadi, R.: 2002, ‘Quaternary Refugia and Persistence of Biodiversity’, Science297, 2009–2010.

    Google Scholar 

  • Tajima, F.: 1989, ‘Statistical Method for Testing the Neutral Mutation Hypothesis of DNA Polymorphism’, Genetics123, 585–595.

    CAS  PubMed  Google Scholar 

  • Tarr, C. L. and Fleischer, R. C.: 1993, ‘Mitochondrial-DNA Variation and Evolutionary Relationships in the Amakihi Complex’, Auk110, 825–831.

    Google Scholar 

  • Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M., and Preece, R. C.: 2002, ‘Buffered Tree Population Changes in a Quaternary Refugium: Evolutionary Implications’, Science297, 2044–2047.

    Article  CAS  PubMed  Google Scholar 

  • Williams, M., Dunkerley, D., De Deckker, P., Kershaw, P., and Chappell, J.: 1998, Quaternary Environments, 2nd edn., Arnold, London.

    Google Scholar 

  • Zink, R. M. and Blackwell, R. C.: 1998, ‘Molecular Systematics of the Scaled Quail Complex Genus Callipepla’, Auk115, 394–403.

    Google Scholar 

  • Zhaxybayeva, O. and Gogarten, J. P.: 2002, ‘Bootstrap, Bayesian Probability and Maximum Likelihood Mapping: Exploring New Tools for Comparative Genome Analyses’, BMC Genomics3, 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin L. Pruett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruett, C.L., Winker, K. Biological Impacts of Climatic Change on a Beringian Endemic: Cryptic Refugia in the Establishment and Differentiation of the Rock Sandpiper (Calidris Ptilocnemis). Climatic Change 68, 219–240 (2005). https://doi.org/10.1007/s10584-005-1584-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-1584-4

Keywords

Navigation