Skip to main content
Log in

A pseudopotential approach to the superconducting state parameters of (Ni33Zr67)1−x M x (M=Ti, V, Co, Cu) ternary metallic glasses

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Superconductivity in ternary metallic glasses has been investigated using the model pseudopotential approach, which has been found quite successful in explaining superconductivity in metals, binary alloys and binary glasses. It is observed that this simple methodology successfully explains superconducting behaviour of ternary glasses without requiring the solution of Dirac equation for a many body problem or estimation of various interactions as required in ab-initio pseudopotential theory. In the present work superconducting state parameters of fourteen metallic glasses of (Ni-Zr)-M system (M=Ti, V, Co, Cu) have been determined in the BCS-Eliashberg-McMillan framework. It is observed that addition of V, Co, and Cu as the third element (M) to a binary metallic glass (Ni33 Zr67) causes the parameters λ,T c, α, andN 0 V to decrease, and Coulomb pseudopotential (μ*) to increase with concentration of M, showing that the presence of third element (M) causes suppression of superconducting behaviour of the alloy. The decrease inT c with increasing concentration of third element (M) may be attributed to the modifications in density of states at the Fermi levelN(E F), and probable changes in the band structure of the alloy due to addition of the third element (M). Slight difference is noticed when Ti is added to the Ni33 Zr67 alloy. In this caseT c rises initially and then decreases with concentration of M, showing a peak at aboutx=0.05. This indicates that on addition of Ti, 3d states grow near the Fermi level and hence contribute substantially toN(E F), favouring superconducting behaviour in this case. The present results forT c show an excellent agreement with the experimental data. QuadraticT c equations have been proposed, which provide successfully theT c values of ternary metallic glasses under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Mizutani, C. Mishima, and T. Goto: J. Phys.: Cond. Matter1 (1989) 1831.

    Article  ADS  Google Scholar 

  2. Y. Yamada, Y. Itoh, and U. Mizutani: Mater. Sci. Engg.99 (1988) 289.

    Article  Google Scholar 

  3. R. Zehringer, P. Oelhafen, H.-J. Guntherodt, Y. Yamada, and U. Mizutani: Mater. Sci. Engg.99 (1988) 317.

    Article  Google Scholar 

  4. U. Mizutani, Y. Yamada, and C. Mishima: Solid State Commun.62 (1987) 641.

    Article  Google Scholar 

  5. R. Sharma and K.S. Sharma: Supercond. Sci. Technol.10 (1997) 557.

    Article  ADS  Google Scholar 

  6. K.S. Sharma and C.M. Kachhava: Czech. J. Phys. B.30 (1980) 619.

    Article  Google Scholar 

  7. R. Sharma and K.S. Sharma: Czech. J. Phys. B24 (1984) 325.

    Article  ADS  Google Scholar 

  8. R. Sharma, K.S. Sharma, and L. Dass: Czech. J. Phys. B39 (1989) 537.

    Article  ADS  Google Scholar 

  9. N.S. Saxena, K.C. Jain, N. Gupta, and M.P. Saxena: Physica174 (1991) 136.

    Article  Google Scholar 

  10. M. Gupta, P.C. Agarwal, K.S. Sharma, and L. Dass: Phys. Status Solidi B211 (1999) 731.

    Article  Google Scholar 

  11. S. Sharma and H. Khan: inProc. of DAE Solid State Physics Symp., Jiwaji University, Gwalior, 2003, Abstract hP 26, Manuscript No. 326.

    Google Scholar 

  12. S. Sharma, K.S. Sharma, and H. Khan: Supercond. Sci. Technol.17 (2004) 474.

    Article  ADS  Google Scholar 

  13. S. Sharma, H. Khan, and K.S. Sharma: Phys. Status Solidi B241 (2004) 2562.

    Article  ADS  Google Scholar 

  14. N.W. Ashcroft: Phys. Lett.23 (1966) 48.

    Article  ADS  Google Scholar 

  15. M. Gellmann and K.A. Brueckner: Phys. Rev.106 (1958) 364.

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Grimvall:Thermodynamic properties of Materials, Amsterdam, North Holland, 1986, p. 49.

    Google Scholar 

  17. C.M. Varma and R.C. Dynes: inSuperconductivity in d- and f-band metals, (Ed. D.H. Douglass), Plenum Press, New York, 1976, p. 507.

    Google Scholar 

  18. P.B. Allen and R.C. Dynes: Phys. Rev. B12 (1975) 905.

    Article  ADS  Google Scholar 

  19. H.P.R. Frederiske (ed.): inAmerican Inst. of Phys. Handbook (3rd edn.), McGraw Hill, New York.

  20. P. Morel and P.W. Anderson: Phys. Rev.125 (1962) 1263.

    Article  ADS  Google Scholar 

  21. J. Emsley: inThe Elements (3rd edn.), Oxford Univ. Press, Oxford, 1998.

    Google Scholar 

  22. C.V. Pandya, P.R. Vyas, T.C. Pandya, N. Rani, and V.B. Gohel: Physica B307 (2001) 138.

    Article  ADS  Google Scholar 

  23. C. Kittel:Introduction to Solid State Physics (7th edn.), Wiley, New York, 1996.

    Google Scholar 

  24. P.B. Allen and M.L. Cohen: Phys. Rev.187 (1969) 525.

    Article  ADS  Google Scholar 

  25. W.L. McMillan: Phys. Rev.167 (1968) 331.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Khan, H. & Sharma, K.S. A pseudopotential approach to the superconducting state parameters of (Ni33Zr67)1−x M x (M=Ti, V, Co, Cu) ternary metallic glasses. Czech J Phys 55, 1005–1011 (2005). https://doi.org/10.1007/s10582-005-0099-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0099-6

PACS

Key words

Navigation