Skip to main content
Log in

Charge transport through a flexible molecular junction

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Vibrationally inelastic electron transport through a flexible molecular junction is investigated. The study is based on a mechanistic model for a biphenyl molecule between two metal electrodes. Employing methods from electron-molecule scattering theory, which allow a numerically exact treatment, we study the effect of vibrational excitation on the transmission probability for different parameter regimes. The current-voltage characteristic is analyzed for different temperatures, based on a Landauer-type formula. Furthermore, the process of electron assisted tunneling between adjacent wells in the torsional potential of the molecule is discussed and the validity of approximate methods to describe the transmission probability is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi, M. Ratne, and S. Yaliraki, Eds.: Chem. Phys. 281 (2002) 111. Special issue on: “Processes in molecular wires”.

  2. A. Nitzan and M.A. Ratner: Science 300 (2003) 1384.

    Google Scholar 

  3. A. Aviram and M.A. Ratner: Chem. Phys. Lett. 29 (1974) 277.

    Google Scholar 

  4. C. Joachim, J.K. Gimzewski, R.R. Schlittler, and C. Chavy: Phys. Rev. Lett. 74 (1995) 2102.

    Google Scholar 

  5. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour: Science 278 (1997) 252.

    Google Scholar 

  6. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, and J.M. van Ruitenbeek: Nature 419 (2002) 906.

    Google Scholar 

  7. J. Reicher, R. Ochs, H.B. Weber, M. Mayo, and H. von Lohneysen: Phys. Rev. Lett. 88 (2002) 176804.

    Google Scholar 

  8. A.O. Solak, S. Ranganathan, T. Itoh, and R.L. McCreery: Electrochem. Solid-State Lett. 5 (2002) E43.

    Google Scholar 

  9. J. Chen and M.A. Reed: Chem. Phys. 281 (2002) 127.

    Google Scholar 

  10. E.G. Emberly and G. Kirczenow: Phys. Rev. Lett. 91 (2003) 188301.

    Google Scholar 

  11. C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A.E. Roitberg, and J.L. Krause: Phys. Rev. Lett. 92 (2004) 158301.

    Google Scholar 

  12. M. Olson, Y. Mao, T. Windus, M. Kemp, M. Ratner, N. Léon, and V. Mujica: J. Phys. Chem. B 102 (1998) 941.

    Google Scholar 

  13. W. Schmickler: Chem. Phys. 289 (2003) 349.

    Google Scholar 

  14. A. Troisi, M.A. Ratner, and A. Nitzan: J. Chem. Phys. 118 (2003) 6072.

    Google Scholar 

  15. E.G. Emberly and G. Kirczenow: Phys. Rev. B 61 (2000) 5740.

    Google Scholar 

  16. K. Walczak: arXiv: cond-mat/0306174 (2003).

  17. D. Boese and H. Schoeller: Europhys. Lett. 54 (2001) 668.

    Google Scholar 

  18. K.D. McCarthy, N. Prokof’ev, and M.T. Tuominen: Phys. Rev. B 67 (2003) 245415.

    Google Scholar 

  19. J. Lehmann, S. Kohler, V. May, and P. Hänggi: J. Chem. Phys. 121 (2004) 2278.

    Google Scholar 

  20. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, and P.L. McEuen: Nature 407 (2000) 57.

    Google Scholar 

  21. D. Segal and A. Nitzan: J. Chem. Phys. 117 (2002) 3915.

    Google Scholar 

  22. D. Segal, A. Nitzan, and P. Hänggi: J. Chem. Phys. 119 (2003) 6840.

    Google Scholar 

  23. M. Čížek, M. Thoss, and W. Domcke: Phys. Rev. B 70 (2004) 125406.

    Google Scholar 

  24. W. Domcke: Phys. Rep. 208 (1991) 97.

    Google Scholar 

  25. B. Xu and N.J. Tao: Science 301 (2003) 1221.

    Google Scholar 

  26. Y.Q. Xue and M.A. Ratner: Phys. Rev. B 68 (2003) 115406.

    Google Scholar 

  27. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, and C.P. Kubiak,: Phys. Rev. B 53 (1996) R7626.

    Google Scholar 

  28. A. Pecchia, M. Gheorghe, A. Di Carlo, P. Lugli, T.A. Niehaus, Th. Frauenheim, and R. Scholz: Phys. Rev. B 68 (2003) 235321.

    Google Scholar 

  29. S. Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, and K. Tanabe: J. Chem. Phys. 110 (1999) 2858.

    Google Scholar 

  30. S. Arulmozhiraja and T. Fujii: J. Chem. Phys. 115 (2001) 10589.

    Google Scholar 

  31. S. Datta: Superlattices Microstructures 28 (2000) 253.

    Google Scholar 

  32. E.N. Economou: Green’s Functions in Quantum Physics, Springer-Verlag, Berlin, 1983. D.S.M.C. Desjonquères: Concepts in Surface Physics, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  33. N.F. Lane: Rev. Mod. Phys. 52 (1980) 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Jiří Horaáček our friend and scientific mentor of one of us (MČ)on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čížek, M., Thoss, M. & Domcke, W. Charge transport through a flexible molecular junction. Czech J Phys 55, 189–202 (2005). https://doi.org/10.1007/s10582-005-0030-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0030-1

molecular electronics

Navigation