Skip to main content

Advertisement

Log in

Increased Prefrontal Oxygenation Related to Distractor-Resistant Working Memory in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

  • Original Article
  • Published:
Child Psychiatry & Human Development Aims and scope Submit manuscript

Abstract

This study aimed at investigating the effect of distraction on working memory and its underlying neural mechanisms in children with attention-deficit/hyperactivity disorder (ADHD). To this end, we studied hemodynamic activity in the prefrontal cortex using near-infrared spectroscopy while 16 children with ADHD and 10 typically developing (TD) children performed a working memory task. This task had two conditions: one involved a distraction during the memory delay interval, whereas the other had no systematic distraction. The ADHD patients showed significantly poorer behavioral performance compared with the TD group, particularly under the distraction. The ADHD group exhibited significantly higher level of prefrontal activation than did TD children. The activity level was positively correlated with the severity of ADHD symptoms. These results suggest that the impairment in the inhibition of distraction is responsible for the working memory deficits observed in ADHD children. Inefficient processing in the prefrontal cortex appears to underlie such deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baddeley A (1992) Working memory. Science 255:556–559

    Article  PubMed  Google Scholar 

  2. Baddeley A (1986) Working memory. Oxford University Press, Oxford

    Google Scholar 

  3. Peterson LR, Peterson MJ (1959) Short-term retention of individual verbal items. J Exp Psychol 58:193–198

    Article  PubMed  Google Scholar 

  4. Keppel G, Underwood BJ (1962) Proactive inhibition in short-term retention of single items. J Verb Learn Verb Behav 1:153–161

    Article  Google Scholar 

  5. Friedman NP, Miyake A (2004) The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen 133:101–135

    Article  PubMed  Google Scholar 

  6. D’Esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37:1303–1315

    Article  PubMed  Google Scholar 

  7. Tsujimoto S, Postle BR (2012) The prefrontal cortex and oculomotor delayed response: a reconsideration of the “mnemonic scotoma”. J Cogn Neurosci 24:627–635

    Article  PubMed  Google Scholar 

  8. Malmo RB (1942) Interference factors in delayed response in monkey after removal of the frontal lobes. J Neurophysiol 5:295–308

    Google Scholar 

  9. Sakai K, Rowe JB, Passingham RE (2002) Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat Neurosci 5:479–484

    PubMed  Google Scholar 

  10. Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13:1460–1478

    PubMed  Google Scholar 

  11. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. Text revision (DSM-IV-TR). American Psychiatric Association, Washington, DC

    Book  Google Scholar 

  12. Doyle AE, Willcutt EG, Seidman LJ, Biederman J, Chouinard V-A, Silva J et al (2005) Attention-deficit/hyperactivity disorder endophenotypes. Biol Psychiatry 57:1324–1335

    Article  PubMed  Google Scholar 

  13. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    PubMed  Google Scholar 

  14. Rommelse NNJ, Altink ME, Oosterlaan J, Buschgens CJM, Buitelaar J, Sergeant JA (2008) Support for an independent familial segregation of executive and intelligence endophenotypes in ADHD families. Psychol Med 38:1595–1606

    Article  PubMed  Google Scholar 

  15. Rommelse N, Altink ME, Martin NC, Buschgens CJ, Faraone SV, Buitelaar JK et al (2008) Relationship between endophenotype and phenotype in ADHD. Behav Brain Funct 4:4

    Article  PubMed  Google Scholar 

  16. Barkley RA (2006) Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment, 3rd edn. Guilford Press, New York

    Google Scholar 

  17. Martinussen R, Tannock R (2006) Working memory impairments in children with attention-deficit hyperactivity disorder with and without comorbid language learning disorders. J Clin Exp Neuropsychol 28:1073–1094

    Article  PubMed  Google Scholar 

  18. Barnett R, Maruff P, Vance A, Luk ES, Costin J, Wood C et al (2001) Abnormal executive function in attention deficit hyperactivity disorder: the effect of stimulant medication and age on spatial working memory. Psychol Med 31:1107–1115

    Article  PubMed  Google Scholar 

  19. Roodenrys S (2006) Working memory function in attention deficit hyperactivity disorder. In: Alloway TP, Gathercole SE (eds) Working memory and neurodevelopmental disorders. Psychology Press, Hove and New York, pp 187–212

    Google Scholar 

  20. Gagnon L, Yücel MA, Dehaes M, Cooper RJ, Perdue KL, Selb J et al (2012) Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. NeuroImage 59:3933–3940

    Article  PubMed  Google Scholar 

  21. Hoshi Y (2007) Functional near-infrared spectroscopy: current status and future prospects. J Biomed Opt 12:062106

    Article  PubMed  Google Scholar 

  22. Irani F, Platek SM, Bunce S, Ruocco AC, Chute D (2007) Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol 21:9–37

    Article  PubMed  Google Scholar 

  23. Negoro H, Sawada M, Iida T, Tanaka S, Kishimoto T (2010) Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near infrared spectroscopy. Child Psychiatry Hum Dev 41:133–155

    Article  Google Scholar 

  24. Greisen G, Leung T, Wolf M (2011) Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Philos Transact A Math Phys Eng Sci 369:4440–4451

    Article  Google Scholar 

  25. Tsujimoto S (2008) The prefrontal cortex: functional neural development during early childhood. Neuroscientist 14:345–358

    Article  PubMed  Google Scholar 

  26. Johnson MH (2011) Developmental cognitive neuroscience, 3rd edn. Wiley–Blackwell, Chichester

    Google Scholar 

  27. Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34:269–284

    Article  PubMed  Google Scholar 

  28. Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H et al (2003) Optical topography: practical problems and new applications. Appl Opt 42:3054–3062

    Article  PubMed  Google Scholar 

  29. Strangman G, Culver JP, Thompson JH, Boas DA (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731

    Article  PubMed  Google Scholar 

  30. Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662

    PubMed  Google Scholar 

  31. Tsujimoto S, Yamamoto T, Kawaguchi H, Koizumi H, Sawaguchi T (2004) Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb Cortex 14:703–712

    Article  PubMed  Google Scholar 

  32. Tsujii T, Yamamoto E, Ohira T, Takahashi T, Watanabe S (2010) Antihistamine effects on prefrontal cortex activity during working memory process in preschool children: a near-infrared spectroscopy (NIRS) study. Neurosci Res 67:80–85

    Article  PubMed  Google Scholar 

  33. Matsuda G, Hiraki K (2006) Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. NeuroImage 29:706–711

    Article  PubMed  Google Scholar 

  34. Morris SB, DeShon RP (2002) Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods 7:105–125

    Article  PubMed  Google Scholar 

  35. Wagner G, Sinsel E, Sobanski T, Kohler S, Marinou V, Mentzel HJ et al (2006) Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry 59:958–965

    Article  PubMed  Google Scholar 

  36. Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346

    Article  PubMed  Google Scholar 

  37. Rajala AZ, Henriques JB, Populin LC (2012) Dissociative effects of methylphenidate in nonhuman primates: trade-offs between cognitive and behavioral performance. J Cogn Neurosci 24:1371–1381

    Article  PubMed  Google Scholar 

  38. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    Article  PubMed  Google Scholar 

  39. Karlsgodt KH, Sanz J, van Erp TGM, Bearden CE, Nuechterlein KH, Cannon TD (2009) Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia. Schizophr Res 108:143–150

    Article  PubMed  Google Scholar 

  40. Thormodsen R, Jensen J, Holmèn A, Juuhl-Langseth M, Emblem KE, Andreassen OA et al (2011) Prefrontal hyperactivation during a working memory task in early-onset schizophrenia spectrum disorders: an fMRI study. Psychiat Res Neuroim 194:257–262

    Article  Google Scholar 

  41. Cardoner N, Harrison BJ, Pujol J, Soriano-Mas C, Hernandez-Ribas R, Lopez-Sola M et al (2011) Enhanced brain responsiveness during active emotional face processing in obsessive compulsive disorder. World J Biol Psychiatry 12:349–363

    Article  PubMed  Google Scholar 

  42. Prvulovic D, Hubl D, Sack AT, Melillo L, Maurer K, Frölich L et al (2002) Functional imaging of visuospatial processing in Alzheimer’s disease. NeuroImage 17:1403–1414

    Article  PubMed  Google Scholar 

  43. Bär K-J, Wagner G, Koschke M, Boettger S, Boettger MK, Schlösser R et al (2007) Increased prefrontal activation during pain perception in major depression. Biol Psychiatry 62:1281–1287

    Article  PubMed  Google Scholar 

  44. Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP et al (2010) Span, crunch, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22:655–669

    Article  PubMed  Google Scholar 

  45. Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM et al (2004) Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related FMRI study. Am J Psychiatry 161:1650–1657

    Article  PubMed  Google Scholar 

  46. Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD (2000) Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry 157:278–280

    Article  PubMed  Google Scholar 

  47. Ernst M, Kimes AS, London ED, Matochik JA, Eldreth D, Tata S et al (2003) Neural substrates of decision making in adults with attention deficit hyperactivity disorder. Am J Psychiatry 160:1061–1070

    Article  PubMed  Google Scholar 

  48. Wessa M, Heissler J, Schonfelder S, Kanske P (2012). Goal-directed behavior under emotional distraction is preserved by enhanced task-specific activation. Soc Cogn Affect Neurosci. doi:10.1093/scan/nsr098

  49. Buchsbaum MS, Buchsbaum BR, Hazlett EA, Haznedar MM, Newmark R, Tang CY et al (2007) Relative glucose metabolic rate higher in white matter in patients with schizophrenia. Am J Psychiatry 164:1072–1081

    Article  PubMed  Google Scholar 

  50. Sheridan MA, Hinshaw S, D’Esposito M (2007) Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 46:1357–1366

    Article  PubMed  Google Scholar 

  51. Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S et al (2009) Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cereb Cortex 19:146–152

    Article  PubMed  Google Scholar 

  52. Aron AR, Robbing TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Neurosci 8:170–177

    Article  Google Scholar 

  53. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151

    Article  PubMed  Google Scholar 

  54. Tsujimoto S, Genovesio A, Wise SP (2011) Frontal pole cortex: encoding ends at the end of the endbrain. Trends Cogn Sci 15:169–176

    Article  PubMed  Google Scholar 

  55. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. PNAS 98:6917–6922

    Article  PubMed  Google Scholar 

  56. Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JA et al (2006) A shift from diffuse to focal cortical activity with development. Dev Sci 9:1–8

    Article  PubMed  Google Scholar 

  57. Tsujimoto S, Kuwajima M, Sawaguchi T (2007) Developmental fractionation of working memory and response inhibition during childhood. Exp Psychol 54:30–37

    Article  PubMed  Google Scholar 

  58. Silk T, Vance A, Rinehart N, Egan G, O’Boyle M, Bradshaw JL et al (2005) Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: functional magnetic resonance imaging study. Br J Psychiatry 187:282–283

    Article  PubMed  Google Scholar 

  59. Kobel M, Bechtel N, Weber P, Specht K, Klarhofer M, Scheffler K et al (2009) Effects of methylphenidate on working memory functioning in children with attention deficit/hyperactivity disorder. Eur J Paediatr Neurol 13:516–523

    Article  PubMed  Google Scholar 

  60. Ehlis A-C, Bähne CG, Jacob CP, Herrmann MJ, Fallgatter AJ (2008) Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J Psychiatr Res 42:1060–1067

    Article  PubMed  Google Scholar 

  61. Schecklmann M, Romanos M, Bretscher F, Plichta MM, Warnke A, Fallgatter AJ (2010) Prefrontal oxygenation during working memory in ADHD. J Psychiatr Res 44:621–628

    Article  PubMed  Google Scholar 

  62. Vance A, Silk TJ, Casey M, Rinehart NJ, Bradshaw JL, Bellgrove MA et al (2007) Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Mol Psychiatry 12:826–832

    Article  PubMed  Google Scholar 

  63. Sonuga-Barke EJ (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238

    Article  PubMed  Google Scholar 

  64. Kita Y, Gunji A, Inoue Y, Goto T, Sakihara K, Kaga M et al (2011) Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study. Brain Dev 33:494–503

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Saori Kajima, Kana Nishikawa, and Joy Ko for their technical assistance. This work was supported by an Intramural Research Grant (22-6; Clinical Research for Diagnostic and Therapeutic Innovations in Developmental Disorders) for Neurological and Psychiatric Disorders of NCNP.

Conflict of interest

The authors report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujimoto, S., Yasumura, A., Yamashita, Y. et al. Increased Prefrontal Oxygenation Related to Distractor-Resistant Working Memory in Children with Attention-Deficit/Hyperactivity Disorder (ADHD). Child Psychiatry Hum Dev 44, 678–688 (2013). https://doi.org/10.1007/s10578-013-0361-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10578-013-0361-2

Keywords

Navigation