Skip to main content
Log in

The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADD:

ATRX-DNMT3-DNMTT3L

ALT:

Alternative lengthening of telomeres

ATRX:

α-Thalassemia/mental retardation X-linked

BEND3:

BEN domain containing 3

DAXX:

Death domain-associated protein

ERV:

Endogenous retrovirus

HUSH:

Human-silencing hub

HP1:

Heterochromatin protein 1

IAP:

Intracisternal A particle

KAP1:

KRAB-ZFP-associated protein 1

KRAB-ZFP:

Krüppel-associated box domain-zinc finger proteins

LINE:

Long-interspersed nucleotide element

LTR:

Long terminal repeat

Mommes:

Modifiers of murine metastable epialleles

NuRD:

Nucleosome remodeling and deacetylase complex

ORC:

Origin recognition complex

Pc:

Polycomb

PEV:

Position effect variegation

PICh:

Proteomics of isolated chromatin segment

piRNA:

PIWI-interacting RNA

PIWI:

P-element-induced wimpy testis

POT1:

Protection of telomeres 1

RAP1:

Repressor and activator protein 1

SAHF:

Senescence-associated heterochromatic foci

SETDB1:

SET domain bifurcated 1

Su(var):

Suppressor of variegation

TERRA:

Telomere repeat-containing RNA

TIN2:

TRF1­interacting nuclear protein 2

TPP1:

POT1- and TIN2-interacting protein

TRF1:

Telomeric repeat-binding factor 1

References

  • Aravin A et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207

    CAS  PubMed  Google Scholar 

  • Azzalin CM et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  CAS  PubMed  Google Scholar 

  • Bartke T et al (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blewitt ME et al (2005) An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci U S A 102(21):7629–7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower-Toland B et al (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21(18):2300–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulut-Karslioglu A et al (2012) A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19(10):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Bulut-Karslioglu A et al (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55(2):277–290

    Article  CAS  PubMed  Google Scholar 

  • Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11(5):319–330

    Article  CAS  PubMed  Google Scholar 

  • Davis CM et al (1989) Activation and demethylation of the intracisternal a particle genes by 5-azacytidine. Cell Differ Dev 27(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L et al (2013) An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse. Genome Biol 14(9):R96

    Article  PubMed  PubMed Central  Google Scholar 

  • Day DS et al (2010) Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol 11(6):R69

    Article  PubMed  PubMed Central  Google Scholar 

  • Dejardin J (2015) Switching between epigenetic states at pericentromeric heterochromatin. Trends Genet 31(11):661–672

    Article  CAS  PubMed  Google Scholar 

  • Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136(1):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W, Lin H (2002) Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    Article  CAS  PubMed  Google Scholar 

  • Deng Z et al (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35(4):403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge JE et al (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24(6):2478–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in drosophila. Cold Spring Harb Perspect Biol 5(8):a017780

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsasser SJ et al (2012) DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491(7425):560–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsasser SJ et al (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522(7555):240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelen E et al (2015) Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry. Nat Commun 6:7155

    Article  PubMed  PubMed Central  Google Scholar 

  • Eymery A et al (2016) The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 143(15):2767–2779

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cao M et al (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Gaspar-Maia A et al (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12(1):36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AD et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo S et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6(9):699–708

    Article  CAS  PubMed  Google Scholar 

  • He Q et al (2015) The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. Cell Stem Cell 17(3):273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaphy CM et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041):425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide S, Dejardin J (2015) End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. Nat Commun 6:6674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizu H et al (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26(21):2361–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki YW et al (2016) Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol Cell 63(3):408–419

    Article  CAS  PubMed  Google Scholar 

  • Iwase S et al (2011) ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat Struct Mol Biol 18(7):769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Grusby L et al (2001) Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • James TC et al (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of drosophila. Eur J Cell Biol 50(1):170–180

    CAS  PubMed  Google Scholar 

  • Jost KL et al (2012) Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 121(6):555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi MM et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8(6):676–687

    Article  CAS  PubMed  Google Scholar 

  • Kipling D et al (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11(2):235–241

    Article  CAS  PubMed  Google Scholar 

  • Lachner M et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2014) Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 28(18):2041–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JH et al (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24(4):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzec P et al (2015) Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers. Cell 160(5):913–927

    Article  CAS  PubMed  Google Scholar 

  • Matsui T et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–931

    Article  CAS  PubMed  Google Scholar 

  • Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3(2):91–102

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7(7):540–546

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E et al (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyzis RK et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334

    Article  Google Scholar 

  • Nakayama J et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113

    Article  CAS  PubMed  Google Scholar 

  • Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  • Nishibuchi G, Nakayama J (2014) Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 156(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181

    PubMed  PubMed Central  Google Scholar 

  • Padeken J et al (2015) Repeat DNA in genome organization and stability. Curr Opin Genet Dev 31:12–19

    Article  CAS  PubMed  Google Scholar 

  • Peters AH et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Rea S et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  • Riethman H (2008) Human telomere structure and biology. Annu Rev Genomics Hum Genet 9:1–19

    Article  CAS  PubMed  Google Scholar 

  • Rowe HM et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240

    Article  CAS  PubMed  Google Scholar 

  • Sadaie M et al (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27(16):1800–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saksouk N et al (2014) Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56(4):580–594

    Article  CAS  PubMed  Google Scholar 

  • Saksouk N et al (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F et al (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280(1):225–236

    Article  CAS  PubMed  Google Scholar 

  • Schotta G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schueler MG, Sullivan BA (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7:301–313

    Article  CAS  PubMed  Google Scholar 

  • Solovei I et al (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368

    Article  CAS  PubMed  Google Scholar 

  • Solovei I et al (2013) LBR and Lamin a/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598

    Article  CAS  PubMed  Google Scholar 

  • Tchasovnikarova IA et al (2015) GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348(6242):1481–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46

    CAS  Google Scholar 

  • Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Tsumura A et al (2006) Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11(7):805–814

    Article  CAS  PubMed  Google Scholar 

  • Udugama M et al (2015) Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res 43(21):10227–10237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen M et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5(3):407–414

    Article  CAS  PubMed  Google Scholar 

  • Wang CI et al (2013) Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 20(2):202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6(9):3156–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierer M, Mann M (2016) Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 25(R2):R106–R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Déjardin.

Additional information

Responsible editors: Nick Gilbert and Davide Marenduzzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishibuchi, G., Déjardin, J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 25, 77–87 (2017). https://doi.org/10.1007/s10577-016-9547-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9547-3

Keywords

Navigation