Skip to main content
Log in

The GTPase RAN regulates multiple steps of the centrosome life cycle

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Growing lines of evidence implicate the small GTPase RAN, its regulators and effectors—predominantly, nuclear transport receptors—in practically all aspects of centrosome biology in mammalian cells. These include duplication licensing, cohesion, positioning, and microtubule-nucleation capacity. RAN cooperates with the protein nuclear export vector exportin 1/CRM1 to recruit scaffolding proteins containing nuclear export sequences that play roles in the structural organization of centrosomes. Together, they also limit centrosome reduplication by regulating the localization of key “licensing” proteins during the centrosome duplication cycle. In parallel, RAN also regulates the capacity of centrosomes to nucleate and organize functional microtubules, and this predominanlty involves importin vectors: many factors regulating microtubule nucleation or function harbor nuclear localization sequences that interact with importin molecules and such interaction inhibits their activity. Active RANGTP binding to importin molecules removes the inhibition and releases microtubule regulatory factors in the free productive form. A dynamic scenario emerges, in which RAN is pivotal in linking spatiotemporal control of centrosome regulators to the cell cycle machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKAP450:

A-kinase anchoring protein 450

BIC2:

bicaudal 2

CRM1:

chromosome region maintenance 1

gamma TuRC:

gamma tubulin ring complex

GDP:

guanosine diphosphate

GTP:

guanosine triphosphate

IF:

immunofluorescence

KT:

kinetochore

MT:

microtubule

MTOC:

microtubule-organizing center

NE:

nuclear envelope

NES:

nuclear export signal

NLS:

nuclear localization signal

NoLS:

nucleolar localization signal

NPC:

nuclear pore complex

NPM:

nucleophosmin

NUP:

nucleoporin

PAK4:

p21 protein (Cdc42/Rho)-activated kinase 4

PCM:

pericentriolar material

RANBP1:

RAN-binding protein 1

RANBP2:

RAN-binding protein 2

RANGAP1:

RAN GTPase activating protein 1

RCC1:

regulator of chromosome condensation 1

SAF:

spindle assembly factor

References

  • Agircan FG, Schiebel E, Mardin BR (2014) Separate to operate: control of centrosome positioning and separation. Philos Trans R Soc Lond B Biol Sci 369(1650)

  • Baffet AD, Hu DJ, Vallee RB (2015) Cdk1 activates pre-mitotic nuclear envelope dynein recruitment and apical nuclear migration in neural stem cells. Dev Cell 33:703–716

    Article  CAS  PubMed  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of RAN GTPase and inhibition of GTP dissociation by RAN-GTP binding protein RANBP1. EMBO J 14:705–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N (2010) Subgroup II PAK-mediated phosphorylation regulates RAN activity during mitosis. J Cell Biol 190:807–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodie KM, Henderson BR (2012) Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and aurora A kinase. J Biol Chem 287:7701–7716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodie KM, Mok MT, Henderson BR (2012) Characterization of BARD1 targeting and dynamics at the centrosome: the role of CRM1, BRCA1 and the Q564H mutation. Cell Signal 24:451–459

    Article  CAS  PubMed  Google Scholar 

  • Budhu AS, Wang XW (2005) Loading and unloading: orchestrating centrosome duplication and spindle assembly by RAN/CRM1. Cell Cycle 4:1510–1514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E (2001) RAN-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3:228–234

    Article  CAS  PubMed  Google Scholar 

  • Caudron M, Bunt G, Bastiaens P, Karsenti E (2005) Spatial coordination of spindle assembly by chromosome mediated signaling gradients. Science 309:1373–1376

    Article  CAS  PubMed  Google Scholar 

  • Cavazza T and Vernos I (2015) The RANGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond. Frontiers Cell Dev Biol

  • Ciciarello M, Mangiacasale R, Thibier C, Guarguaglini G, Marchetti E, Di Fiore B, Lavia P (2004) Importin beta is transported to spindle poles during mitosis and regulates RAN-dependent spindle assembly factors in mammalian cells. J Cell Sci 117:6511–6522

    Article  CAS  PubMed  Google Scholar 

  • Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase RAN. Cell Mol Life Sci 64:1891–1914

    Article  CAS  PubMed  Google Scholar 

  • Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by RAN GTPase. Nat Rev Mol Cell Biol 9:464–477

    Article  CAS  PubMed  Google Scholar 

  • De Luca A, Mangiacasale R, Severino A, Malquori L, Baldi A, Palena A, Mileo AM, Lavia P, Paggi MG (2003) E1A deregulates the centrosome cycle in a RAN GTPase-dependent manner. Cancer Res 63:1430–1437

    PubMed  Google Scholar 

  • Di Fiore B, Ciciarello M, Mangiacasale R, Palena A, Tassin AM, Cundari E, Lavia P (2003) Mammalian RANBP1 regulates centrosome cohesion during mitosis. J Cell Sci 116:3399–3411

    Article  PubMed  Google Scholar 

  • Doherty KJ, McKay C, Chan KK, El-Tanani MK (2011) RAN GTPase as a target for cancer therapy: RAN binding proteins. Curr Mol Med 11:686–695

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Margolis B (2011) The RAN importin system in cilia trafficking. Organogenesis 7:147–153

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan S, Whiteman EL, Hurd TW, McIntyre JC, Dishinger JF, Liu CJ, Martens JR, Verhey KJ, Sajjan U, Margolis B (2011) Induction of RANGTP drives ciliogenesis. Mol Biol Cell 22:4539–4548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK (2006) Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein RAN is important for bipolar spindle formation. Biochem Biophys Res Commun 349:144–152

    Article  CAS  PubMed  Google Scholar 

  • Flotho A, Werner A (2012) The RANBP2/RANGAP1*SUMO1/Ubc9 complex: a multisubunit E3 ligase at the intersection of SUMOylation and the RAN GTPase cycle. Nucleus 3:429–432

    Article  PubMed Central  PubMed  Google Scholar 

  • Forbes DJ, Travesa A, Nord MS, Bernis C (2015) Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 34:122–134

    Article  CAS  PubMed  Google Scholar 

  • Forgues M, Difilippantonio MJ, Linke SP, Ried T, Nagashima K, Feden J, Valerie K, Fukasawa K, Wang XW (2003) Involvement of CRM1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 23:5282–5292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garrett S, Auer K, Compton DA, Kapoor TM (2002) hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 12:2055–2059

    Article  CAS  PubMed  Google Scholar 

  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) RAN induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104:83–93

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Wälde S, Joseph J, Kehlenbach RH, van Deursen JM (2011) RAN-dependent docking of importin-beta to RANBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 194:597–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han X, Saito H, Miki Y, Nakanishi A (2008) A CRM1-mediated nuclear export signal governs cytoplasmic localization of BRCA2 and is essential for centrosomal localization of BRCA2. Oncogene 27:2969–2977

    Article  CAS  PubMed  Google Scholar 

  • Hashizume C, Kobayashi A, Wong RW (2013) Down-modulation of nucleoporin RANBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis 4:e854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsia KC, Wilson-Kubalek EM, Dottore A, Hao Q, Tsai KL, Forth S, Shimamoto Y, Milligan RA, Kapoor TM (2014) Reconstitution of the augmin complex provides insights into its architecture and function. Nat Cell Biol 16:852–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu DJ, Baffet AD, Nayak T, Akhmanova A, Doye V, Vallee RB (2013) Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154:1300–1313

    Article  CAS  PubMed  Google Scholar 

  • Hwang HI, Ji JH, Jang YJ (2011) Phosphorylation of RAN-binding protein-1 by Polo-like kinase-1 is required for interaction with RAN and early mitotic progression. J Biol Chem 286:33012–33020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RANGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RANGAP1-RANBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 14:611–617

    Article  CAS  PubMed  Google Scholar 

  • Kahana JA, Cleveland DW (1999) Beyond nuclear transport. RAN-GTP as a determinant of spindle assembly. J Cell Biol 146(6):1205–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalab P, Heald R (2008) The RANGTP gradient—a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Kalab P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RANGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701

    Article  CAS  PubMed  Google Scholar 

  • Kéryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvée A, Lavia P, Bornens M, Tassin AM (2003a) Part of RAN is associated with AKAP450 at the centrosome: involvement in microtubule organizing activity. Mol Biol Cell 14:4260–4271

    Article  PubMed Central  PubMed  Google Scholar 

  • Kéryer G, Witczak O, Delouvée A, Kemmner W, Rouillard D, Tasken K, Bornens M (2003b) Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 14:2436–2446

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavia P, Mileo AM, Giordano A, Paggi MG (2003) Emerging roles of DNA tumor viruses in cell proliferation: new insights into genomic instability. Oncogene 22:6508–6516

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Jiang Q, Zhang C (2009) A fraction of CRM1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin. Biochem Biophys Res Commun 384:383–388

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C (2010) Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle. Cell Res 20:948–962

    Article  CAS  PubMed  Google Scholar 

  • Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V (2004) The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 15:3333–3344

    Article  PubMed Central  PubMed  Google Scholar 

  • Maiato H, Logarinho E (2014) Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 16:386–394

    Article  CAS  PubMed  Google Scholar 

  • Meunier S, Vernos I (2015) Acentrosomal microtubule assembly in mitosis: the where, when, and how. Trends Cell Biol

  • Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M (2010) The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol 12:164–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase RAN in spindle assembly. Cell 104:95–106

    Article  CAS  PubMed  Google Scholar 

  • Nitta T, Kanai M, Sugihara E, Tanaka M, Sun B, Nagasawa T, Sonoda S, Saya H, Miwa M (2006) Centrosome amplification in adult T-cell leukemia and human T-cell leukemia virus type 1 Tax-induced human T cells. Cancer Sci 97:836–841

    Article  CAS  PubMed  Google Scholar 

  • O’Connell CB, Khodjakov AL (2007) Cooperative mechanisms of mitotic spindle formation. J Cell Sci 120:1717–1722

    Article  PubMed  Google Scholar 

  • Okuda M (2002) The role of nucleophosmin in centrosome duplication. Oncogene 21:6170–6174

    Article  CAS  PubMed  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    Article  CAS  PubMed  Google Scholar 

  • Peloponese JM Jr, Haller K, Miyazato A, Jeang KT (2005) Abnormal centrosome amplification in cells through the targeting of RAN-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc Natl Acad Sci U S A 102:18974–18979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petry S, Vale RD (2015) Microtubule nucleation at the centrosome and beyond. Nat Cell Biol 17:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RANBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    Article  CAS  PubMed  Google Scholar 

  • Qin H (2012) Regulation of intraflagellar transport and ciliogenesis by small G proteins. Int Rev Cell Mol Biol 293:149–168

    Article  CAS  PubMed  Google Scholar 

  • Rensen WM, Mangiacasale R, Ciciarello M, Lavia P (2008) The GTPase RAN: regulation of cell life and potential roles in cell transformation. Front Biosci 13:4097–4121

    Article  CAS  PubMed  Google Scholar 

  • Richards SA, Lounsbury KM, Macara IG (1995) The C-terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem 270:14405–14411

    Article  CAS  PubMed  Google Scholar 

  • Roscioli E, Bolognesi A, Guarguaglini G, Lavia P (2010) RAN control of mitosis in human cells: gradients and local signals. Biochem Soc Trans 38:1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Roscioli E, Di Francesco L, Bolognesi A, Giubettini M, Orlando S, Harel A, Schininà ME, Lavia P (2012) Importin-β negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. J Cell Biol 196:435–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162:991–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo JS, Kim HN, Kim SJ, Bang J, Kim EA, Sung KS, Yoon HJ, Yoo HY, Choi CY (2014) Cell cycle-dependent SUMO-1 conjugation to NuMA. Biochem Biophys Res Commun 443:259–265

    Article  CAS  PubMed  Google Scholar 

  • Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K (2005) Characterization of centrosomal association of nucleophosmin/B23 linked to CRM1 activity. FEBS Lett 579:6621–6634

    Article  CAS  PubMed  Google Scholar 

  • Sillibourne JE, Milne DM, Takahashi M, Ono Y, Meek DW (2002) Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol 322:785–797

    Article  CAS  PubMed  Google Scholar 

  • Smith AE, Slepchenko BM, Schaff JC, Loew LM, Macara IG (2002) Systems analysis of RAN transport. Science 295(5554):488–491

    Article  CAS  PubMed  Google Scholar 

  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with NPCs and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8(4):e1000350

    Article  PubMed Central  PubMed  Google Scholar 

  • Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76:623–637

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus. J Biol Chem 274:17267–17274

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Yaseen NR (2014) Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27:3–10

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P (2007) RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 120:3748–3761

    Article  CAS  PubMed  Google Scholar 

  • Torosantucci L, De Luca M, Guarguaglini G, Lavia P, Degrassi F (2008) Localized RANGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19:1873–1882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Watt PJ, Stowell CL, Leaner VD (2013) The nuclear import receptor Kpnβ1 and its potential as an anticancer therapeutic target. Crit Rev Eukaryot Gene Expr 23:1–10

    Article  PubMed  Google Scholar 

  • Wan J, Subramonian D, Zhang XD (2012) SUMOylation in control of accurate chromosome segregation during mitosis. Curr Protein Pept Sci 13:467–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Budhu A, Forgues M, Wang XW (2005) Temporal and spatial control of nucleophosmin by the RAN-CRM1 complex in centrosome duplication. Nat Cell Biol 7:823–830

    Article  CAS  PubMed  Google Scholar 

  • Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-beta in coupling RAN to downstream targets in microtubule assembly. Science 291:653–656

    Article  CAS  PubMed  Google Scholar 

  • Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, Sibarita JB, Fukagawa T, Shiekhattar R, Yen T, Doye V (2007) The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J 26:1853–1864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to members of my group for many stimulating discussions on issues addressed in this review and for critical reading of this work. Work in my laboratory is supported by grants from the Italian Association for Cancer Research (AIRC IG14534), Consiglio Nazionale delle Ricerche (CNR Interomics Flagship Project, grant IBISA), and MIUR-PRIN 2010–11 (2010W7YRLZ_001006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Lavia.

Additional information

Responsible Editors: Daniela Cimini and Giulia Guarguaglini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavia, P. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res 24, 53–65 (2016). https://doi.org/10.1007/s10577-015-9514-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9514-4

Keywords

Navigation