Skip to main content

Advertisement

Log in

Genome engineering in cattle: recent technological advancements

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases—such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)—has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SCNT:

Somatic cell nuclear transfer

CT:

Chromatin transfer

ES:

Embryonic stem cells

HR:

Homologous recombination

KO:

Knock out

KI:

Knock in

PN:

Pronuclear

CGH:

Comparative genomic hybridization

ZFNs:

Zinc finger nucleases

TALENs:

Transcription activator-like effector nuclease

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9

HDR:

Homology-directed repair

NHEJ:

Nonhomologous end joining

PGK:

Phosphoglycerate kinase-1

ST SV40:

Promoter and thymidine kinase enhancer

CAG:

Chicken beta-actin promoter with CMV enhancer

HAC:

Human artificial chromosome

Indel:

Insertion or deletion of DNA base pair(s)

hEPO:

Human erythropoietin

hSA:

Human serum albumin

BSA:

Bovine serum albumin

References

  • Bachiller D, Schellander K, Peli J, Ruther U (1991) Liposome-mediated DNA uptake by sperm cells. Mol Reprod Dev 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bosze Z, Baranyi M, Whitelaw CB (2008) Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol 606:357–93

    Article  CAS  PubMed  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson DF, Tan W, Hackett PB, Fahrenkrug SC (2013) Editing livestock genomes with site-specific nucleases. Reprod Fertil Dev 26:74–82

    Article  PubMed  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–39

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan AW, Kukolj G, Skalka AM, Bremel RD (1999) Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection. Mol Reprod Dev 52:406–13

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce De Leon FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–8

    Article  CAS  PubMed  Google Scholar 

  • Donovan DM, Kerr DE, Wall RJ (2005) Engineering disease resistant cattle. Transgenic Res 14:563–7

    Article  CAS  PubMed  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan Z, Li W, Lee SR, Meng Q, Shi B, Bunch TD, White KL, Kong IK, Wang Z (2014) Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One 9:e109755

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) Zfn, Talen, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–5

    Article  CAS  PubMed  Google Scholar 

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124:4154–61

    Article  CAS  PubMed  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–3

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Sun Y, Li H, Zhu Y, Yang D (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 108:19078–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heo, Y., Quan, X., Xu, Y., Baek, S., Choi, H., Kim, N. & KIM, J. (2014) CRISPR/Cas9 nuclease-mediated gene knock-in in bovine pluripotent stem cells and embryos. Stem Cells Dev. doi:10.1089/scd.2014.0278

  • Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–6

    CAS  PubMed  Google Scholar 

  • Kandavelou K, Chandrasegaran S (2009) Custom-designed molecular scissors for site-specific manipulation of the plant and mammalian genomes. Methods Mol Biol 544:617–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karatzas CN (2003) Designer milk from transgenic clones. Nat Biotechnol 21:138–9

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–34

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koller BH, Smithies O (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10:705–30

    Article  CAS  PubMed  Google Scholar 

  • Krimpenfort P, Rademakers A, Eyestone W, Van Der Schans A, Van Den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R et al (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y) 9:844–7

    Article  CAS  Google Scholar 

  • Kubisch HM, Larson MA, Eichen PA, Wilson JM, Roberts RM (1997) Adenovirus-mediated gene transfer by perivitelline microinjection of mouse, rat, and cow embryos. Biol Reprod 56:119–24

    Article  CAS  PubMed  Google Scholar 

  • Kubota C, Tian XC, Yang X (2004) Serial bull cloning by somatic cell nuclear transfer. Nat Biotechnol 22:693–4

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, ROBL JM (2004) Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36:775–80

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl JM (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–81

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Park H, Kong I, Wang Z (2013) 30 a transcription activator-like effector nuclease (Talen)-mediated universal gene knock-in strategy for mammary glands-specific expression of recombinant proteins in dairy cattle. Reprod Fertil Dev 26:129–129

    Article  Google Scholar 

  • Li T, Yang B (2013) TAL effector nuclease (TALEN) engineering. Methods Mol Biol 978:63–72

    Article  CAS  PubMed  Google Scholar 

  • Liu GE, Hou Y, Robl JM, Kuroiwa Y, Wang Z (2011) Assessment of genome integrity with array CGH in cattle transgenic cell lines produced by homologous recombination and somatic cell cloning. Genome Integr 2:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565

    PubMed Central  PubMed  Google Scholar 

  • Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci 281:20133368

    Article  PubMed  Google Scholar 

  • Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N (2014) Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One 9:e95225

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsushita H, Sano A, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2014) Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production. PLoS One 9:e90383

    Article  PubMed Central  PubMed  Google Scholar 

  • Mcpherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94:12457–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moghaddassi S, Eyestone W, Bishop CE (2014) TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin. PLoS One 9:e89631

    Article  PubMed Central  PubMed  Google Scholar 

  • Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasman Y, Saini SS, Smith E, Kaushik AK (2010) Organization and genomic complexity of bovine lambda-light chain gene locus. Vet Immunol Immunopathol 135:306–13

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., Mclaren, D. G., Whitelaw, C. B. & Fahrenkrug, S. C. 2014. Genome edited sheep and cattle. Transgenic Res. doi:10.1007/s11248-014-9832-x

  • Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, Mccaffrey AP, Cathomen T, Scharenberg AM, Joung JK (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 40:5560–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67:127–33

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Reyon D, Maeder ML, Foley JE, Thibodeau- Beganny S, LI X, Regan MR, Dahlborg EJ, Goodwin MJ, Fu F, Voytas DF, Joung JK, Dobbs D (2010) Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinform 11:543

    Article  Google Scholar 

  • Sano A, Matsushita H, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2013) Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS One 8:e78119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sedivy JM, Sharp PA (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc Natl Acad Sci U S A 86:227–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selo I, Negroni L, Creminon C, Yvon M, Peltre G, Wal JM (1998) Allergy to bovine beta-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Int Arch Allergy Immunol 117:20–8

    CAS  PubMed  Google Scholar 

  • Sendai Y, Sawada T, Urakawa M, Shinkai Y, Kubota K, Hoshi H, Aoyagi Y (2006) alpha1,3-Galactosyltransferase-gene knockout in cattle using a single targeting vector with loxP sequences and cre-expressing adenovirus. Transplantation 81:760–6

    Article  CAS  PubMed  Google Scholar 

  • Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P (2004) Cloned calves from chromatin remodeled in vitro. Biol Reprod 70:146–53

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, FAHRENKRUG SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110:16526–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, Ogura A, Tanemura K, Tachibana M, Perry AC, Colgan DF, Mombaerts P, Yanagimachi R (2000) Cloning of mice to six generations. Nature 407:318–9

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Kerr DE, Bondioli KR (1997) Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci 80:2213–24

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–51

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang K, Ding F, Zhao R, Li S, Li R, Xu L, Song C, Dai Y, Li N (2013) A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle. J Biotechnol 163:377–85

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, LI T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kandavelou K, Chandrasegaran S (2007) Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci 64:2933–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu L, Zhao P, Mariano A, Han R (2013) Targeted myostatin gene editing in multiple mammalian species directed by a single pair of TALE nucleases. Mol Ther Nucleic Acids 2:e112

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongde Wang.

Additional information

Responsible Editors: Natalay Kouprina and Vladimir Larionov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. Genome engineering in cattle: recent technological advancements. Chromosome Res 23, 17–29 (2015). https://doi.org/10.1007/s10577-014-9452-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9452-6

Keywords

Navigation