Skip to main content

Advertisement

Log in

Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Cultivated chickpea is the third most important legume after field bean and garden pea worldwide. Despite considerable breeding towards improved yield and resistance to biotic and abiotic stresses, the production of chickpea remained stagnant, but molecular tools are expected to increase the impact of current improvement programs. As a first step towards this goal, various genetic linkage maps have been established and markers linked to resistance genes been identified. However, until now, only one linkage group (LG) has been assigned to a specific chromosome. In the present work, mitotic chromosomes were sorted using flow cytometry and used as template for PCR with primers designed for genomic regions flanking microsatellites. These primers amplify sequence-tagged microsatellite site markers. This approach confirmed the assignment of LG8 to the smallest chromosome H. For the first time, LG5 was linked to the largest chromosome A, LG4 to a medium-sized chromosome E, while LG3 was anchored to the second largest chromosome B. Chromosomes C and D could not be flow-sorted separately and were jointly associated to LG6 and LG7. By the same token, chromosomes F and G were anchored to LG1 and LG2. To establish a set of preferably diagnostic cytogenetic markers, the genomic distribution of various probes was verified using FISH. Moreover, a partial genomic bacterial artificial chromosome (BAC) library was constructed and putative single/low-copy BAC clones were mapped cytogenetically. As a result, two clones were identified localizing specifically to chromosomes E and H, for which no cytogenetic markers were yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

FISH:

Fluorescence in situ hybridization

LG:

Linkage group

MAS:

Marker-assisted selection

NOR:

Nucleolus organizing region

rDNA:

Ribosomal DNA

References

  • Abbo S, Miller TE, Reader SM, Dunford RP, King LP (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 274:227–274

    Article  CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J. doi:10.1111/j.1467-7652.2010.00587.x

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 13:275–309

    Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91

    Article  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in cereals. Chromosome Res 15:51–66

    Article  PubMed  Google Scholar 

  • FAO (2010): http://faostat.fao.org/ (Updated: 02 September 2010)

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    PubMed  CAS  Google Scholar 

  • Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet 87:893–899

    Google Scholar 

  • Galasso I, Pignone D (1992) Characterization of chickpea chromosomes by banding techniques. Genet Res Crop Evol 39:115–119

    Google Scholar 

  • Galasso I, Frediani M, Maggiani M, Creminini R, Pignone D (1996) Chromatin organization by banding technique, in situ hybridization, and nuclear DNA content in Cicer L. (Leguminosae). Genome 39:258–265

    Article  PubMed  CAS  Google Scholar 

  • Gil J, Cubero JI (1993) Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111:257–260

    Article  Google Scholar 

  • Gil J, Nadal S, Luna D, Moreno MT, De Haro A (1996) Variability of some physico-chemical characters in Desi and Kabuli chickpea types. J Sci Food Agri 71:179–184

    Article  CAS  Google Scholar 

  • Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G (1998) Chromosome localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequences in the genome of Cicer arietinum L. Chromosome Res 6:97–104

    Article  PubMed  CAS  Google Scholar 

  • Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Prakash AB, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    Article  PubMed  Google Scholar 

  • Hřibová E, Doleželová M, Doležel J (2008) Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization. Biol Plantarum 52:445–452

    Article  Google Scholar 

  • Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Fairaivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    Article  PubMed  CAS  Google Scholar 

  • Kejnovský E, Vrána J, Matsunaga S, Souček P, Široký J, Doležel J, Vyskot B (2001) Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes. Genetics 158:1269–1277

    PubMed  Google Scholar 

  • Kovářová P, Navrátilová A, Macas J, Doležel J (2007) Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biol Plantarum 51:43–48

    Article  Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    Article  PubMed  Google Scholar 

  • Kubaláková M, Valárik M, Bartoš J, Vrána J, Číhalíková J, Molnár-Láng M, Doležel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905

    Article  PubMed  Google Scholar 

  • Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829

    Article  PubMed  Google Scholar 

  • Lucretti S, Doležel J (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28:236–242

    Article  PubMed  CAS  Google Scholar 

  • Macas J, Doležel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1:107–115

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doležel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato S, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Khal G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Article  CAS  Google Scholar 

  • Moreno MT, Cubero JI (1978) Variation in Cicer arietinum L. Euphytica 27:465–485

    Article  Google Scholar 

  • Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Požárková D, Vrána J, Doležel J, Macas J (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res 10:63–71

    Article  PubMed  CAS  Google Scholar 

  • Ocampo B, Venora G, Erico A, Singh KB, Saccardo F (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240

    Google Scholar 

  • Ohri D, Pal M (1991) The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA content. Heredity 66:367–372

    Article  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Šafář J, Šimková H, Doležel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. J Agric Genom 5: http://www.ncgr.org/research/jag

  • Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  Google Scholar 

  • Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    Article  PubMed  Google Scholar 

  • Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    Google Scholar 

  • Sorokin A, Marthe F, Houben A, Pich U, Graner A, Künzel G (1994) Polymerase chain reaction-mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome 37:550–555

    Article  PubMed  CAS  Google Scholar 

  • Staginnus C, Winter P, Desel C, Schmidt T, Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Staginnus C, Desel C, Schmidt T, Kahl G (2010) Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea (Cicer arietinum L.). Genome 53:1090–1102

    Article  PubMed  CAS  Google Scholar 

  • Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659

    Article  PubMed  Google Scholar 

  • Tang XM, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:899–915

    Article  PubMed  CAS  Google Scholar 

  • Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34

    Article  PubMed  Google Scholar 

  • Venora G, Ocampo B, Singh KB, Saccardo F (1995) Karyotype of a Kabuli-type chickpea (Cicer arietinum L.) by image analysis system. Caryologia 48:147–155

    Google Scholar 

  • Vláčilová K, Ohri D, Vrána J, Číhalíková J, Kubaláková M, Kahl G, Doležel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10:695–706

    Article  PubMed  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Šimková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Doležel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequenced-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Ptaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from C. arietinum x C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:155–1163

    Article  Google Scholar 

  • Xiong Z, Kim JS, Pires JC (2010) Integration of genetic, physical, and cytogenetic maps for Brassica rapa chromosome A7. Cytogen Genome Res 129:190–198

    Article  CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. P. Winter (GenXPro GmbH, Frankfurt Innovation Centre, Frankfurt am Main, Germany) and Dr. B. Hüttel (MPI for Plant Breeding Research, Cologne, Germany) for providing primers for chromosome-specific microsatellite markers and valuable suggestions concerning PCR with these markers. We thank our colleagues Romana Šperková, Bc. and Jitka Weiserová, Bc. for excellent technical assistance. We appreciate valuable comments and suggestions by two anonymous reviewers. This work was supported by Ministry of Education, Youth, and Sports (grant award no. LC06004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Doležel.

Additional information

Responsible Editor: Herbert Macgregor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatloukalová, P., Hřibová, E., Kubaláková, M. et al. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 19, 729–739 (2011). https://doi.org/10.1007/s10577-011-9235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9235-2

Keywords

Navigation