Skip to main content

Advertisement

Log in

Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

RNA-binding motif (RBM) proteins comprise a large family of RNA-binding proteins whose functions are poorly understood. Since some RBM proteins are candidate alternative splicing factors we examined whether one such member of the family, RBM6, exhibited a pattern of nuclear distribution and targeting consistent with this role. Using antibodies raised against mouse RBM6 to immmunostain mammalian cell lines we found that the endogenous protein was both distributed diffusely in the nucleus and concentrated in a small number of nuclear foci that corresponded to splicing speckles/interchromatin granule clusters (IGCs). Tagged RBM6 was also targeted to IGCs, although it accumulated in large bodies confined to the IGC periphery. The basis of this distribution pattern was suggested by the targeting of tagged RBM6 in the giant nuclei (or germinal vesicles (GVs)) of Xenopus oocytes. In spread preparations of GV contents RBM6 was localized both to lampbrush chromosomes and to the surface of many oocyte IGCs, where it was confined to up to 50 discrete patches. Each patch of RBM6 labelling corresponded to a bead-like structure of 0.5–1 μm diameter that assembled de novo on the IGC surface. Assembly of these novel structures depended on the repetitive N-terminal region of RBM6, which acts as a multimerization domain. Without this domain, RBM6 was no longer excluded from the IGC interior but accumulated homogeneously within it. Assembly of IGC-surface structures in mammalian cell lines also depended on the oligomerization domain of RBM6. Oligomerization of RBM6 also had morphological effects on its other major target in GVs, namely the arrays of nascent transcripts visible in lampbrush chromosome transcription units. The presence of oligomerized RBM6 on many lampbrush loops caused them to appear as dense structures with a spiral morphology that appeared quite unlike normal, extended loops. This distribution pattern suggests a new role for RBM6 in the co-transcriptional packaging or processing of most nascent transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CB:

Cajal body

CELF1:

CUG-BP1 and ETR-3 Like Factor 1

DRB:

5,6-dichloro-1-β-d-ribofuranosylbenzimidazole

GV:

Germinal vesicle

IGC:

Interchromatin granule cluster

LBC:

Lampbrush chromosome

pol II:

RNA polymerase II

RBM6:

RNA-binding motif protein 6

References

  • Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Angelier N, Paintraud M, Lavaud A, Lechaire JP (1984) Scanning electron microscopy of amphibian lampbrush chromosomes. Chromosoma 89:243–253

    Article  Google Scholar 

  • Beenders B, Jones PL, Bellini M (2007) The tripartite motif of nuclear factor 7 is required for its association with transcriptional units. Mol Cell Biol 27:2615–2624

    Article  CAS  PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  • Bohmann K, Ferreira JA, Lamond AI (1995) Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol 131:817–831

    Article  CAS  PubMed  Google Scholar 

  • Bonnal S, Martinez C, Forch P, Bachi A, Wilm M, Valcarcel J (2008) RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 32:81–95

    Article  CAS  PubMed  Google Scholar 

  • Bregman DB, Du L, van der Zee S, Warren SL (1995) Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129:287–298

    Article  CAS  PubMed  Google Scholar 

  • Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR (1997) Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol 138:225–238

    Article  CAS  PubMed  Google Scholar 

  • Callan HG (1986) Lampbrush chromosomes. Springer, Berlin

    Google Scholar 

  • Chan EK, Takano S, Andrade LE, Hamel JC, Matera AG (1994) Structure, expression and chromosomal localization of human p80-coilin gene. Nucleic Acids Res 22:4462–4469

    Article  CAS  PubMed  Google Scholar 

  • Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951

    Article  CAS  PubMed  Google Scholar 

  • Cook PR (1999) The organization of replication and transcription. Science 284:1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Daneholt B (2001) Assembly and transport of a premessenger RNP particle. Proc Natl Acad Sci USA 98:7012–7017

    Article  CAS  PubMed  Google Scholar 

  • Dirks RW, de Pauw ES, Raap AK (1997) Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci 110:515–522

    CAS  PubMed  Google Scholar 

  • Doyle O, Corden JL, Murphy C, Gall JG (2002) The distribution of RNA polymerase II largest subunit (RPB1) in the Xenopus germinal vesicle. J Struct Biol 140:154–166

    Article  CAS  PubMed  Google Scholar 

  • Drabkin H, West J, Hotfilder M et al (1999) DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene 18:2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Fox AH, Lam YW, Leung AK et al (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    Article  CAS  PubMed  Google Scholar 

  • Fu XD, Maniatis T (1992) Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. Science 256:535–538

    Article  CAS  PubMed  Google Scholar 

  • Fu XD, Mayeda A, Maniatis T, Krainer AR (1992) General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5′ and 3′ splice site selection. Proc Natl Acad Sci USA 89:11224–11228

    Article  CAS  PubMed  Google Scholar 

  • Fushimi K, Ray P, Kar A, Wang L, Sutherland LC, Wu JY (2008) Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5. Proc Natl Acad Sci USA 105:15708–15713

    Article  CAS  PubMed  Google Scholar 

  • Gall JG (1991) Spliceosomes and snurposomes. Science 252:1499–1500

    Article  CAS  PubMed  Google Scholar 

  • Gall J (1998) Spread preparation of Xenopus germinal vesicle contents. In: Spector D, Goldman R, Leinwand L (eds) Cells: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 52.51–52.54

    Google Scholar 

  • Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4:975–980

    Article  CAS  PubMed  Google Scholar 

  • Gall JG, Bellini M, Wu Z, Murphy C (1999) Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 10:4385–4402

    CAS  PubMed  Google Scholar 

  • Gall JG, Wu Z, Murphy C, Gao H (2004) Structure in the amphibian germinal vesicle. Exp Cell Res 296:28–34

    Article  CAS  PubMed  Google Scholar 

  • Hall LL, Smith KP, Byron M, Lawrence JB (2006) Molecular anatomy of a speckle. Anat Rec A Discov Mol Cell Evol Biol 288:664–675

    PubMed  Google Scholar 

  • Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211

    Article  CAS  PubMed  Google Scholar 

  • Hebert MD, Matera AG (2000) Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 11:4159–4171

    CAS  PubMed  Google Scholar 

  • Hock J, Weinmann L, Ender C et al (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8:1052–1060

    Article  PubMed  Google Scholar 

  • Hotfilder M, Baxendale S, Cross M, Sablitzky F (1999) Def-2, -3, -6 and -8, novel mouse genes differentially expressed in the haemopoietic system. Br J Haematol 106:335–344

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Tsugawa K, Tokunaga K et al (2008) S1-1 nuclear domains: characterization and dynamics as a function of transcriptional activity. Biol Cell 100:523–535

    Article  CAS  PubMed  Google Scholar 

  • Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322:1713–1717

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lai MC, Kuo HW, Chang WC, Tarn WY (2003) A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J 22:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Lerner EA, Lerner MR, Janeway CA Jr, Steitz JA (1981) Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci USA 78:2737–2741

    Article  CAS  PubMed  Google Scholar 

  • Lin JC, Tarn WY (2005) Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol Cell Biol 25:10111–10121

    Article  CAS  PubMed  Google Scholar 

  • Lin JC, Tarn WY (2009) RNA-binding motif protein 4 translocates to cytoplasmic granules and suppresses translation via argonaute2 during muscle cell differentiation. J Biol Chem 284:34658–34665

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Wu Z, Nizami Z et al (2009) Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 20:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Shpargel KB (2006) Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18:317–324

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2008) Cell biology: nuclear order out of chaos. Nature 456:333–334

    Article  CAS  PubMed  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10:177–200

    Article  CAS  PubMed  Google Scholar 

  • Morgan GT (2007) Localized co-transcriptional recruitment of the multifunctional RNA-binding protein CELF1 by lampbrush chromosome transcription units. Chromosome Res 15:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Pawlicki JM, Steitz JA (2010) Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 20:52–61

    Article  CAS  PubMed  Google Scholar 

  • Pellizzoni L, Baccon J, Rappsilber J, Mann M, Dreyfuss G (2002) Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Biol Chem 277:7540–7545

    Article  CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Pyne CK, Simon F, Loones MT, Geraud G, Bachmann M, Lacroix JC (1994) Localization of antigens PwA33 and La on lampbrush chromosomes and on nucleoplasmic structures in the oocyte of the urodele Pleurodeles waltl: light and electron microscopic immunocytochemical studies. Chromosoma 103:475–485

    Article  CAS  PubMed  Google Scholar 

  • Roth MB, Murphy C, Gall JG (1990) A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J Cell Biol 111:2217–2223

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed  Google Scholar 

  • Singh OP, Visa N, Wieslander L, Daneholt B (2006) A specific SR protein binds preferentially to the secretory protein gene transcripts in salivary glands of Chironomus tentans. Chromosoma 115:449–458

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Ling Y, Morgan GT (2003) Subnuclear localization and Cajal body targeting of transcription elongation factor TFIIS in amphibian oocytes. Mol Biol Cell 14:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (1993) Nuclear organization of pre-mRNA processing. Curr Opin Cell Biol 5:442–447

    Article  CAS  PubMed  Google Scholar 

  • Spector DL, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481

    CAS  PubMed  Google Scholar 

  • Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10:457–466

    Article  CAS  PubMed  Google Scholar 

  • Sutherland LC, Rintala-Maki ND, White RD, Morin CD (2005) RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem 94:5–24

    Article  CAS  PubMed  Google Scholar 

  • Tucker KE, Berciano MT, Jacobs EY et al (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307

    Article  CAS  PubMed  Google Scholar 

  • Tuma RS, Roth MB (1999) Induction of coiled body-like structures in Xenopus oocytes by U7 snRNA. Chromosoma 108:337–344

    Article  CAS  PubMed  Google Scholar 

  • Warren SL, Landolfi AS, Curtis C, Morrow JSW (1992) Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle. J Cell Sci 103:381–388

    CAS  PubMed  Google Scholar 

  • Wu ZA, Murphy C, Callan HG, Gall JG (1991) Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J Cell Biol 113:465–483

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Kim E, Warren SL, Berget SM (1997) Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J 16:1401–1412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Rivka Dikstein for RBM6 antibodies and to Archa Fox and Angus Lamond for help with the analysis of paraspeckles. We also thank Tim Self for assistance with confocal microscopy and the MRC for a studentship to support EH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry T. Morgan.

Additional information

Responsible Editor: Herbert Macgregor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heath, E., Sablitzky, F. & Morgan, G.T. Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts. Chromosome Res 18, 851–872 (2010). https://doi.org/10.1007/s10577-010-9170-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9170-7

Keywords

Navigation