Skip to main content

Advertisement

Log in

Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In this work, a novel method was developed to distinguish nucleosome DNA and linker DNA based on increment of diversity combined with quadratic discriminant analysis (IDQD), using k-mer frequency of nucleotides in genome. When used to predict DNA potential for forming nucleosomes, the model achieved a high accuracy of 94.94%, 77.60%, and 86.81%, respectively, for Saccharomyces cerevisiae, Homo sapiens, and Drosophila melanogaster. The area under the receiver operator characteristics curve of our classifier was 0.982 for S. cerevisiae. Our results indicate that DNA sequence preference is critical for nucleosome formation potential and is likely conserved across eukaryotes. The model successfully identified nucleosome-enriched or nucleosome-depleted regions in S. cerevisiae genome, suggesting nucleosome positioning depends on DNA sequence preference. Thus, IDQD classifier is useful for predicting nucleosome positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IDQD:

Increment of diversity combined with quadratic discriminant analysis

CHIP-chip:

Chromatin immunoprecipitation coupled with microarrays

CHIP-Seq:

Chromatin immunoprecipitation coupled with sequencing techniques

ROC:

Receiver operator characteristics

auROC:

The area under the ROC curve

MCC:

Matthew’s correlation coefficient

References

  • Albert I, Mavrich TN, Tomsho LP (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446:572–576

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Enroth S, Rada-Iglesias A (2009) Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19:1732–1741

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K (2007) High resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Liu CL, Humphrey EL (2004) Global nucleosome occupancy in yeast. Genome Biol 5:R62

    Article  PubMed  Google Scholar 

  • Bryant GO, Prabhu V, Floer M (2008) Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol 6(12):e317

    Article  Google Scholar 

  • Cao H, Widlund HR, Simonsson T, Kubista M (1998) TGGA repeats impair nucleosome formation. J Mol Biol 281:253–260

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Luo LF (2009) Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis. J Microbiol Meth 78:94–96

    Article  CAS  Google Scholar 

  • Daenen F, van Roy F, De Bleser PJ (2008) Low nucleosome occupancy is encoded around functional human transcription factor binding sites. BMC Genomics 9:332

    Article  PubMed  Google Scholar 

  • Elizabeth RD, Ashley MB, Victor GC (2008) The role of insulator elements in large-scale chromatin structure in interphase. Semin Cell Dev Biol 18(5):682–690

    Google Scholar 

  • Field Y, Kaplan N, Fondufe-Mittendorf Y (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4(11):e1000216

    Article  PubMed  Google Scholar 

  • Field Y, Fondufe-Mittendorf Y, Moore IK (2009) Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat Genet 41:438–445

    Article  CAS  PubMed  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  • Ioshikhes IP, Albert I, Zanton SJ (2006) Nucleosome positions predicted through comparative genomics. Nat Genet 38(10):1210–1215

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ (2006) Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res 16:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Kaplan N, Moore IK, Fondufe-Mittendorf Y (2008) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y (1997) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  Google Scholar 

  • Laxton RR (1978) The measure of diversity. J Theor Biol 70(1):51–67

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Shibata Y, Rao B (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Liu HD, Wu JS, Xie JM, Yang XN, Lu ZH, Sun X (2008) Characteristics of nucleosome core DNA and their applications in predicting nucleosome positions. Biophys J 94:1–8

    Google Scholar 

  • Luger K, Mäder AW, Richmond RK (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Luo LF (2008) Prediction for human transcription start site using diversity measure with quadratic discrimination. Bioinformation 2:316–321

    Google Scholar 

  • Martinez-Campa C, Politis P, Moreau JL, Kent N (2004) Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Mavrich TN, Jiang C, Ioshikhes IP (2008) Nucleosome organization in the Drosophila genome. Nature 453:358–362

    Article  CAS  PubMed  Google Scholar 

  • Miele V, Vaillant C-D, Aubenton-Carafa Y (2009) DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res 37(11):1746–3756

    Google Scholar 

  • Milani P, Chevereau G, Vaillant C (2009) Nucleosome positioning by genomic excluding-energy barriers. Proc Natl Acad Sci USA 106(52):22257–22262

    Article  CAS  PubMed  Google Scholar 

  • Morozov AV, Fortney K, Gaykalova DA (2009) Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res 37(14):4707–4722

    Article  CAS  PubMed  Google Scholar 

  • Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248

    Article  CAS  PubMed  Google Scholar 

  • Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Article  CAS  PubMed  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD (2008) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 134(1):188

    Article  CAS  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    Article  CAS  PubMed  Google Scholar 

  • Satchwell SC, Drew HR, Travers A (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  CAS  PubMed  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (1997) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  Google Scholar 

  • Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Widom J (2009) Poly (dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol 19:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone–DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735–748

    Article  CAS  PubMed  Google Scholar 

  • Tsai L, Luo LF (2000) A statistical mechanical model for predicting B-DNA curvature and flexibility. J Theor Biol 207:177–194

    Article  CAS  PubMed  Google Scholar 

  • Vaillant C, Audit B, Arneodo A (2007) Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett 99:218–303

    Article  Google Scholar 

  • Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100

    Article  CAS  PubMed  Google Scholar 

  • Widlund HR, Kuduvalli PN, Bengtsson M (1999) Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence. J Biol Chem 274:31847–31852

    Article  CAS  PubMed  Google Scholar 

  • Wyrick JJ (1999) Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402:418–421

    Article  CAS  PubMed  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  CAS  PubMed  Google Scholar 

  • Yuan GC, Liu JS (2008) Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comput Biol 4(1):e13

    Article  PubMed  Google Scholar 

  • Zhang LR, Luo LF (2003) Splice site prediction with quadratic discriminant analysis using diversity measure. Nucleic Acids Res 31:6214–6220

    Article  CAS  PubMed  Google Scholar 

  • Zhang MQ (1997) Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc Natl Acad Sci USA 94:565–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to J.Y. Wang for the helpful suggestion. This research was supported by Natural Science Foundation of China (Grant No. 60761001, 61072129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Cai.

Additional information

Responsible Editor: Dean A. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Pei, Z., Liu, J. et al. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis. Chromosome Res 18, 777–785 (2010). https://doi.org/10.1007/s10577-010-9160-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9160-9

Keywords

Navigation