Skip to main content
Log in

Lampbrush chromosomes enable study of cohesin dynamics

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The lampbrush chromosomes present in the nuclei of amphibian oocytes offer unique biological approaches for study of the mechanisms that regulate chromatin structure with high spatial resolution. We discuss fundamental aspects of the remarkable organization and plasticity exhibited by lampbrush chromosomes. We then utilize lampbrush chromosomes to characterize the chromosomal distribution and dynamics of cohesin, the four-protein complex (RAD21/MCD1/SCC1, SMC1, SMC3, SCC3/SA2) responsible for sister chromatid cohesion. We find that endogenous SMC3 and newly expressed hRAD21 co-localize on chromosomal axes, sites where sister chromatids are tightly paired. We present evidence suggesting that hRAD21 recruitment to lampbrush chromosomes is modulated by chromosomal SMC1 and SMC3. Notably, using a technique for de novo chromosome assembly, we demonstrate that both SMC3 and hRAD21 are recruited to single, unreplicated lampbrush chromatids. Finally, we used our novel method of analyzing the oocyte nucleus under oil combined with fluorescence recovery after photobleaching, to provide direct evidence that cohesin is highly dynamic at discrete, condensed chromosomal regions. Collectively, these data demonstrate that lampbrush chromosomes provide a unique and powerful tool for combining biochemical and cytological analyses for dissection of complex chromosomal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EGFP:

enhanced green fluorescent protein

FRAP:

fluorescence recovery after photobleaching

LBC:

lampbrush chromosome

SMC:

structural maintenance of chromosomes

RNP:

ribonucleoprotein

RNAPII:

RNA polymerase II

YFP:

yellow fluorescent protein

References

  • Alexandru G, Uhlmann F, Mechtler K, Poupart MA, Nasmyth K (2001) Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105:459–472

    Article  PubMed  CAS  Google Scholar 

  • Beenders B, Watrin E, Legagneux V, Kireev I, Bellini M (2003) Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res 11:549–564

    Article  PubMed  CAS  Google Scholar 

  • Beenders B, Jones PL, Bellini M (2007) The tripartite motif of nuclear factor 7 is required for its association with transcriptional units. Mol Cell Biol 27:2615–2624

    Article  PubMed  CAS  Google Scholar 

  • Bellini M (2000) Coilin, more than a molecular marker of the cajal (coiled) body. Bioessays 22:861–867

    Article  PubMed  CAS  Google Scholar 

  • Brar GA et al (2006) Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441:532–536

    Article  PubMed  CAS  Google Scholar 

  • Callan HG (1986) Lampbrush Chromosomes. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Chiu A, Revenkova E, Jessberger R (2004) DNA interaction and dimerization of eukaryotic SMC hinge domains. J Biol Chem 279:26233–26242

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R et al (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10:3081–3093

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13

    Article  PubMed  Google Scholar 

  • Fischer D, Hock R, Scheer U (1993) DNA topoisomerase II is not detectable on lampbrush chromosomes but enriched in the amplified nucleoli of Xenopus oocytes. Exp Cell Res 209:255–260

    Article  PubMed  CAS  Google Scholar 

  • Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F. C. W. Vogel, Leipzig

    Google Scholar 

  • Funabiki H, Kumada K, Yanagida M (1996) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15:6617–6628

    PubMed  CAS  Google Scholar 

  • Gall JG (1956) On the submicroscopic structure of chromosomes. In Mutation 8:17–32

    Google Scholar 

  • Gall JG, Murphy C (1998) Assembly of lampbrush chromosomes from sperm chromatin. Mol Biol Cell 9:733–747

    PubMed  CAS  Google Scholar 

  • Gall JG, Bellini M, Wu Z, Murphy C (1999) Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 10:4385–4402

    PubMed  CAS  Google Scholar 

  • Gerlich D, Koch B, Dupeux F, Peters JM, Ellenberg J (2006) Live-cell imaging reveals a stable cohesin–chromatin interaction after but not before DNA replication. Curr Biol 16:1571–1578

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  Google Scholar 

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    Article  PubMed  CAS  Google Scholar 

  • Guacci V (2007) Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells 12:693–708

    PubMed  CAS  Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125:517–530

    Article  PubMed  CAS  Google Scholar 

  • Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, De Robertis EM, Partington G (1976) Injected nuclei in frog oocytes provide a living cell system for the study of transcriptional control. Nature 260:116–120

    Article  PubMed  CAS  Google Scholar 

  • Haering CH et al (2004) Structure and stability of cohesin’s Smc1-kleisin interaction. Mol Cell 15:951–64

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  PubMed  CAS  Google Scholar 

  • Handwerger KE, Murphy C, Gall JG (2003) Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J Cell Biol 160:495–504

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  PubMed  CAS  Google Scholar 

  • Hock R, Moorman A, Fischer D, Scheer U (1993) Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis. Dev Biol 158:510–522

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 3:767–778

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2003) SMC proteins at the crossroads of diverse chromosomal processes. IUBMB Life 55:643–652

    Article  PubMed  CAS  Google Scholar 

  • Kateneva AV, Konovchenko AA, Guacci V, Dresser ME (2005) Recombination protein Tid1p controls resolution of cohesin-dependent linkages in meiosis in Saccharomyces cerevisiae. J Cell Biol 171:241–253

    Article  PubMed  CAS  Google Scholar 

  • Klein F et al (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  • Krasikova A, Barbero JL, Gaginskaya E (2005) Cohesion proteins are present in centromere protein bodies associated with avian lampbrush chromosomes. Chromosome Res 13:675–685

    Article  PubMed  CAS  Google Scholar 

  • Krasikova A et al (2006) On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res 14:777–789

    Article  PubMed  CAS  Google Scholar 

  • Kumada K et al (1998) Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr Biol 8:633–641

    Article  PubMed  CAS  Google Scholar 

  • Leon P, Kezer J (1990) Loop size in newt lampbrush chromosomes. Chromosoma 99:83–86

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Yokochi T, Kobayashi R, Hirano T (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol 150:405–416

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Paine PL (1990) Nonaqueous isolation of transcriptionally active nuclei from Xenopus oocytes. Methods Enzymol 181:36–43

    Article  PubMed  CAS  Google Scholar 

  • McKay MJ et al (1996) Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse. Genomics 36:305–315

    Article  PubMed  CAS  Google Scholar 

  • McNairn and Gerton, this issue

  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  PubMed  CAS  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. chromosome Res 10:177–200

    Article  PubMed  CAS  Google Scholar 

  • Murphy C, Wang Z, Roeder RG, Gall JG (2002) RNA polymerase III in Cajal bodies and lampbrush chromosomes of the Xenopus oocyte nucleus. Mol Biol Cell 13:3466–3476

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer DD, Wilson KL (1991) Egg extracts for nuclear import and nuclear assembly reactions. In: Kay BK, Peng HB (eds) Xenopus laevis: Practical Uses in Cell and Molecular Biology, Vol. 36. Academic Press, San Diego, pp 607–634

    Chapter  Google Scholar 

  • Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008) Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol

  • Paine PL, Johnson ME, Lau Y-T, Tluczek LJM, Miller DS (1992) The oocyte nucleus isolated in oil retains in vivo structure and functions. BioTechniques 13:238–245

    PubMed  CAS  Google Scholar 

  • Parisi S et al (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515–3528

    PubMed  CAS  Google Scholar 

  • Parra MT et al (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Patel SB, Novikova N, Bellini M (2007) Splicing-independent recruitment of spliceosomal small nuclear RNPs to nascent RNA polymerase II transcripts. J Cell Biol 178:937–949

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Novikova N, Beenders B, Austin C, Bellini M (2008) Live images of RNA polymerase II transcription units. Chromosome Res 16:223–232

    Article  PubMed  CAS  Google Scholar 

  • Prieto I et al (2004) Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12:197–213

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Jessberger R (2005) Keeping sister chromatids together: cohesins in meiosis. Reproduction 130:783–790

    Article  PubMed  CAS  Google Scholar 

  • Rückert J (1892) Zur Entwickelungsgeschichte des Ovarialeies bei Selachiern. Anatomische Anzeiger 7:107–158

    Google Scholar 

  • Sommerville J, Baird J, Turner BM (1993) Histone H4 acetylation and transcription in amphibian chromatin. J Cell Biol 120:277–290

    Article  PubMed  CAS  Google Scholar 

  • Stewart MD, Sommerville J, Wong J (2006) Dynamic regulation of histone modifications in Xenopus oocytes through histone exchange. Mol Cell Biol 26:6890–6901

    Article  PubMed  CAS  Google Scholar 

  • Stoop-Myer C, Amon A (1999) Meiosis: Rec8 is the reason for cohesion. Nat Cell Biol 1:E125–127

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762

    Article  PubMed  CAS  Google Scholar 

  • Toth A et al (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–333

    Article  PubMed  CAS  Google Scholar 

  • Tuma R, Stolk JA, Roth MB (1993) Identification and characterization of a sphere organelle protein. J Cell Biol 122:767–773

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386

    Article  PubMed  CAS  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA, Jared DW, Dumont JN, Sega MW (1973) Protein incorporation by isolated amphibian oocytes: III. Optimum incubation conditions. J Exp Zool 184:321–333

    Article  PubMed  CAS  Google Scholar 

  • Xu H et al (2004) A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 5:378–384

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Hirano (Cold Spring Harbor Laboratory) for his generous gift of the antibody directed against the amphibian SMC3. We are greatly indebted to Dr. J.G. Gall (Carnegie Institution of Washington) for providing the amazing images of LBC loops where the distribution patterns of histone H4 and RNAPII are compared. We would also like to thank him, as well as Dr. S.B. Patel, for very insightful discussions, and Dr. B. Beenders (UIUC) for the initial anti-cohesin antibody screen. We thank Dr. P.L. Jones (UIUC) for providing Xenopus sperm heads. Finally, we would like to thank our managing editor, Dr. Christian Haering, and the two anonymous reviewers for their very insightful and constructive critique of our manuscript. This work was a supported by a CAREER award from the National Science Foundation. Vincent Guacci is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bellini.

Additional information

Responsible Editor: Dr. Christian Haering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, C., Novikova, N., Guacci, V. et al. Lampbrush chromosomes enable study of cohesin dynamics. Chromosome Res 17, 165–184 (2009). https://doi.org/10.1007/s10577-008-9015-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9015-9

Keywords

Navigation