Skip to main content
Log in

Different origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsi

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Although the sex-determining gene DMY has been identified on the Y chromosome in the medaka, Oryzias latipes, this gene is absent in most Oryzias species. Recent comparative studies have demonstrated that, in the javanicus species group, Oryzias dancena and Oryzias minutillus have an XX/XY sex determination system, while Oryzias hubbsi has a ZZ/ZW system. Furthermore, sex chromosomes were not homologous in these species. Here, we investigated the sex determination mechanism in Oryzias javanicus, another species in the javanicus group. Linkage analysis of isolated sex-linked DNA markers showed that this species has a ZZ/ZW sex determination system. The sex-linkage map showed a conserved synteny to the linkage group 16 of O. latipes, suggesting that the sex chromosomes in O. javanicus are not homologous to those in any other Oryzias species. Fluorescence in-situ hybridization analysis confirmed that the ZW sex chromosomes of O. javanicus and O. hubbsi are not homologous, and showed that O. javanicus has the morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamino-2-phenylindole-positive heterochromatin at the centromere. These findings suggest the repeated evolution of new sex chromosomes from autosomes in Oryzias, probably through the emergence of new sex-determining genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95: 118–128.

    Article  PubMed  CAS  Google Scholar 

  • Ganguly A, Rock MJ, Prockop DJ (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci U S A 90: 10325–10329.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (2002) The rise and fall of SRY. Trends Genet 18: 259–264.

    Article  Google Scholar 

  • Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124: 901–914.

    Article  PubMed  Google Scholar 

  • Hamaguchi S, Toyazaki Y, Shinomiya A, Sakaizumi M (2004) The XX-XY sex-determination system in Oryzias luzonensis and O. mekongensis revealed by the sex ratio of the progeny of sex-reversed fish. Zool Sci 21: 1015–1018.

    Article  PubMed  Google Scholar 

  • Hauser MT, Adhami F, Dorner M, Fuchs E, Glossl J (1998) Generation of co-dominant PCR-based markers by duplex analysis on high resolution gels. Plant J 16: 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447: 714–719.

    Article  PubMed  Google Scholar 

  • Kimura T, Yoshida K, Shimada A et al. (2005) Genetic linkage map of medaka with polymerase chain reaction length polymorphisms. Gene 363: 24–31.

    Article  PubMed  Google Scholar 

  • Kondo M, Nagao E, Mitani H, Shima A (2001) Differences in recombination frequencies during female and male meioses of the sex chromosomes of the medaka, Oryzias latipes. Genet Res 78: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Nanda I, Hornung U, Schmid M, Schartl M (2004) Evolutionary origin of the medaka Y chromosome. Curr Biol 14: 1664–1669.

    Article  PubMed  Google Scholar 

  • Kondo M, Hornung U, Nanda I et al. (2006) Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res 16: 815–826.

    Article  PubMed  Google Scholar 

  • Matsuda M, Matsuda C, Hamaguchi S, Sakaizumi M (1998) Identification of the sex chromosomes of the medaka, Oryzias latipes, by fluorescence in situ hybridization. Cytogenet Cell Genet 82: 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Sotoyama S, Hamaguchi S, Sakaizumi M (1999) Male-specific restriction of recombination frequency in the sex chromosomes of the medaka, Oryzias latipes. Genet Res 73: 225–231.

    Article  Google Scholar 

  • Matsuda M, Kawato N, Asakawa S et al. (2001) Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. Genes Genet Syst 76: 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A et al. (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417: 559–563.

    Article  PubMed  Google Scholar 

  • Matsuda M, Sato T, Toyazaki Y, Nagahama Y, Hamaguchi S, Sakaizumi M (2003) Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zool Sci 20: 159–161.

    Article  PubMed  Google Scholar 

  • Matsuda M, Shinomiya A, Kinoshita M et al. (2007) The DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci U S A 104: 3865–3870.

    Article  PubMed  Google Scholar 

  • Matsuda Y, Chapman VM (1995) Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16: 261–272.

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Takehana Y, Hamaguchi S, Sakaizumi M (2008) Identification of the sex-determining locus in the Thai medaka, Oryzias minutillus. Cytogenet Genome Res 121: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Shan Z, Schartl M et al. (1999) 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat Genet 21: 258–259.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Kondo M, Hornung U et al. (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A 99: 11778–11783.

    Article  PubMed  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14: 820–828.

    Article  PubMed  Google Scholar 

  • Phillips RB, DeKoning J, Morasch MR, Park LK, Devlin RH (2007) Identification of the sex chromosome pair in chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). Cytogenet Genome Res 116: 298–304.

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Shamu CE, Shen MM et al. (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391: 691–695.

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1996) Evolution of the Y sex chromosome in animals. Bioscience 46: 331–343.

    Article  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al. (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423: 825–837.

    Article  PubMed  Google Scholar 

  • Takehana Y, Naruse K, Sakaizumi M (2005) Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36: 417–428.

    Article  PubMed  Google Scholar 

  • Takehana Y, Demiyah D, Naruse K, Hamaguchi S, Sakaizumi M (2007a) Evolution of different Y chromosomes in two medaka species, Oryzias dancena and O. latipes. Genetics 175: 1335–1340.

    Article  PubMed  Google Scholar 

  • Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M (2007b) Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma 116: 463–470.

    Article  PubMed  Google Scholar 

  • Tanaka K, Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M (2007) Evidence for different origins of sex chromosomes in closely related medaka fishes: Substitution of the master sex-determining gene. Genetics 177: 2075–2081.

    Article  PubMed  CAS  Google Scholar 

  • Uwa H (1986) Karyotype evolution and geographical distribution in the ricefish, genus Oryzias (Oryziidae). In: Uyeno T, Arai R, Taniuchi T, Matsuura K eds. Indo-Pacific Fish Biology: Proceedings of the second international conference on Indo-Pacific fishes. Ichthyological Society of Japan, Tokyo, pp. 867–876.

    Google Scholar 

  • Uwa H, Iwata A (1981) Karyotype and cellular DNA content of Oryzias javanicus (Oryziatidae, Pisces). Chromosome Inf Serv 31: 24–26.

    Google Scholar 

  • Yamamoto T (1961) Progenies of sex-reversal females mated with sex-reversal males in the medaka, Oryzias latipes. J Exp Zool 146: 163–179.

    Article  PubMed  CAS  Google Scholar 

  • Zarkower D (2001) Establishing sexual dimorphism: conservation amidst diversity? Nat Rev Genet 2: 175–185.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Takehana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takehana, Y., Hamaguchi, S. & Sakaizumi, M. Different origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsi . Chromosome Res 16, 801–811 (2008). https://doi.org/10.1007/s10577-008-1227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1227-5

Key words

Navigation