Skip to main content
Log in

Transposable elements as drivers of genomic and biological diversity in vertebrates

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Comparative genomics has revealed that major vertebrate lineages contain quantitatively and qualitatively different populations of retrotransposable elements and DNA transposons, with important differences also frequently observed between species of the same lineage. This is essentially due to (i) the differential evolution of ancestral families of transposable elements, with evolutionary scenarios ranging from complete extinction to massive invasion; (ii) the lineage-specific introduction of transposable elements by infection and horizontal transfer, as exemplified by endogenous retroviruses; and (iii) the lineage-specific emergence of new transposable elements, as particularly observed for non-coding retroelements called short interspersed elements (SINEs). During vertebrate evolution, transposable elements have repeatedly contributed regulatory and coding sequences to the host, leading to the emergence of new lineage-specific gene regulations and functions. In all vertebrate lineages, there is evidence of transposable element-mediated genomic rearrangements such as insertions, deletions, inversions and duplications potentially associated with or subsequent to speciation events. Taken together, these observations indicate that transposable elements are major drivers of genomic and biological diversity in vertebrates, with possible important roles in speciation and major evolutionary transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrusan G, Krambeck HJ (2006) Competition may determine the diversity of transposable elements. Theor Popul Biol 70: 364–375.

    Article  PubMed  Google Scholar 

  • Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Antony JM, van Marle G, Opii W et al. (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Aparicio S, Chapman J, Stupka E et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297: 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  • Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102 (Supplement 1): 6535–6542.

    Article  PubMed  CAS  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M (2005) High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 22: 814–817.

    Article  PubMed  CAS  Google Scholar 

  • Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443: 521–524.

    Article  PubMed  CAS  Google Scholar 

  • Blaise S, de Parseval N, Benit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100: 13013–13018.

    Article  PubMed  CAS  Google Scholar 

  • Boissinot S, Furano AV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18: 2186–2194.

    PubMed  CAS  Google Scholar 

  • Bouneau L, Fischer C, Ozouf-Costaz C et al. (2003) An active non-LTR retrotransposon with tandem structure in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Res 13: 1686–1695.

    Article  PubMed  CAS  Google Scholar 

  • Brandt J, Schrauth S, Veith AM et al. (2005) Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals. Gene 345: 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Bucheton A (1990) I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet 6: 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Campillos M, Doerks T, Shah PK, Bork P (2006) Computational characterization of multiple Gag-like human proteins. Trends Genet 22: 585–589.

    Article  PubMed  CAS  Google Scholar 

  • Casavant NC, Scott L, Cantrell MA, Wiggins LE, Baker RJ, Wichman HA (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154: 1809–1817.

    PubMed  CAS  Google Scholar 

  • Casola C, Hucks D, Feschotte C (2007) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol (Oct 16); [Epub ahead of print].

  • Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117: 411–427.

    Article  PubMed  CAS  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.

    Article  CAS  Google Scholar 

  • Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103: 8101–8106.

    Article  PubMed  CAS  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4: 865–877.

    Article  CAS  Google Scholar 

  • Dasilva C, Hadji H, Ozouf-Costaz C et al. (2002) Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci USA 99: 13636–13641.

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157–2167.

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13: 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap KA, Palmarini M, Varela M et al. (2006). Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103: 14390–14395.

    Article  PubMed  CAS  Google Scholar 

  • Dupressoir A, Marceau G, Vernochet C et al. (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102: 725–730.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Malik HS (2002) Origins and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM, eds., Mobile DNA II, ASM Press, Washington, pp. 1111–1144.

    Google Scholar 

  • Evgen’ev MB, Arkhipova IR (2005) Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 110: 510–521.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41: 331–368.

    Article  PubMed  CAS  Google Scholar 

  • Fontdevila A (2005) Hybrid genome evolution by transposition. Cytogenet Genome Res 110: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Gentles AJ, Wakefield MJ, Kohany O et al. (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17: 992–1004.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11: 1677–1685.

    Article  PubMed  CAS  Google Scholar 

  • Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27: 775–784.

    Article  PubMed  CAS  Google Scholar 

  • Han K, Lee J, Meyer TJ et al. (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3: e184.

    Article  CAS  Google Scholar 

  • Horie K, Saito ES, Keng VW, Ikeda R, Ishihara H, Takeda J (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176: 815–827.

    Article  PubMed  CAS  Google Scholar 

  • Ichiyanagi K, Nishihara H, Duvernell DD, Okada N (2007) Acquisition of endonuclease specificity during evolution of L1 retrotransposon. Mol Biol Evol 24: 2009–2015.

    Article  PubMed  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F et al. (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946–957.

    Article  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3: e181.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA 103: 4540–4545.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23: 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447: 714–719.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120: 759–778.

    Article  PubMed  CAS  Google Scholar 

  • Kordis D, Gubensek F (1998) Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95: 10704–10709.

    Article  PubMed  CAS  Google Scholar 

  • Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J (2007) Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 17: 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Krylov DM, Koonin EV (2001) A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr Biol 11: R584–R587.

    Article  PubMed  CAS  Google Scholar 

  • Kuryshev VY, Skryabin BV, Kremerskothen J, Jurka J, Brosius J (2001) Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309: 1049–1066.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.

    Article  PubMed  CAS  Google Scholar 

  • Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104: 8005–8010.

    Article  PubMed  CAS  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci USA 97: 6248–6249.

    Article  PubMed  CAS  Google Scholar 

  • Mallet F, Bouton O, Prudhomme S et al. (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101: 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  • Masly JP, Jones CD, Noor MA, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448–1450.

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Lee X, Li XP et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Wakefield MJ, Aken B et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC et al. (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78: 671–679.

    Article  PubMed  CAS  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

    Article  CAS  Google Scholar 

  • Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92: 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence - accelerated evolution in rearranged chromosomes. Science 300: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Neafsey DE, Blumenstiel JP, Hartl DL (2004) Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Mol Biol Evol 21: 2310–2318.

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17: 619–621.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16: 864–874.

    Article  PubMed  CAS  Google Scholar 

  • Noor MA, Chang AS (2006) Evolutionary genetics: jumping into a new species. Curr Biol 16: R890–R892.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Ono R, Nakamura K, Inoue K et al. (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pace JK II, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422–432.

    Article  PubMed  CAS  Google Scholar 

  • Peaston AE, Evsikov AV, Graber JH et al. (2004). Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7: 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10: 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176: 1323–1337.

    Article  PubMed  CAS  Google Scholar 

  • Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA 104: 12046–12051.

    Article  PubMed  CAS  Google Scholar 

  • Poulter RT, Goodwin TJ (2005) DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet Genome Res 110: 575–588.

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104: 1895–1900.

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390: 3–17.

    Article  PubMed  CAS  Google Scholar 

  • Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen’ev MB (2004) Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA 101: 14719–14724.

    Article  PubMed  CAS  Google Scholar 

  • Ray DA, Xing J, Salem AH, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55: 928–935.

    Article  PubMed  Google Scholar 

  • Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222–234.

    Article  CAS  Google Scholar 

  • Ribet D, Dewannieux M, Heidmann T (2004) An active murine transposon family pair: retrotransposition of “master” MusD copies and ETn trans-mobilization. Genome Res 14: 2261–2267.

    Article  PubMed  CAS  Google Scholar 

  • Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, LowMJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3: e166.

    Article  CAS  Google Scholar 

  • Schuller M, Jenne D, Voltz R (2005) The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J Neuroimmunol 169: 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Seleme MC, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH Jr. (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci USA 103: 6611–6616.

    Article  PubMed  CAS  Google Scholar 

  • Sen SK, Han K, Wang J et al. (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79: 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Shen CH, Steiner LA (2004) Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J Virol 78: 899–911.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.

    Article  PubMed  CAS  Google Scholar 

  • Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442: 79–81.

    Article  PubMed  CAS  Google Scholar 

  • Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365: 104–110.

    Article  PubMed  CAS  Google Scholar 

  • Toth M, Grimsby J, Buzsaki G, Donovan GP (1995) Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nat Genet 11: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19: 530–536.

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B, Kirkness EF, Loh YH et al. (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5: e101.

    Article  PubMed  CAS  Google Scholar 

  • Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103: 3220–3225.

    Article  PubMed  CAS  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28: 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Volff JN, Brosius J (2007) Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Volff JN, Korting C, Schartl M (2000) Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17: 1673–1684.

    PubMed  CAS  Google Scholar 

  • Volff JN, Hornung U, Schartl M (2001a) Fish retroposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genomics 265: 711–720.

    Article  CAS  Google Scholar 

  • Volff JN, Korting C, Froschauer A, Sweeney K, Schartl M (2001b) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52: 351–360.

    CAS  Google Scholar 

  • Volff JN, Korting C, Meyer A, Schartl M (2001c) Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol 18: 427–431.

    CAS  Google Scholar 

  • Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19: 674–678.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Xing J, Grover D et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007.

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Robertson JS, Schulze SR et al. (2005) The repetitive landscape of the chicken genome. Genome Res 15: 126–136.

    Article  PubMed  Google Scholar 

  • Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL, Batzer MA (2006) Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci USA 103: 17608–17613.

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, Campillos M, Harrington ED, Torrents D, Bork P (2005) Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res 33: 946–954

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Froschauer A, Schultheis C et al. (2006) Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 3: 39–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Nicolas Volff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhne, A., Brunet, F., Galiana-Arnoux, D. et al. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16, 203–215 (2008). https://doi.org/10.1007/s10577-007-1202-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1202-6

Key words

Navigation