Skip to main content
Log in

miRNA and piRNA localization in the male mammalian meiotic nucleus

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

During mammalian meiosis, transcriptional silencing of the XY bivalent is a necessary event where defects may lead to infertility in males. While not well understood, the mechanism of meiotic gene silencing is believed to be RNA-dependent. In this study, we investigated the types and localization of non-coding RNAs in the meiotic nucleus of the male mouse using a microarray screen with different cell isolates as well as FISH. We report that the dense body, a component of the murine spermatocyte sex body similar to that of a dense body in Chinese hamster spermatocytes, is DNA-negative but rich in proteins and RNA including miRNAs (micro RNAs) and piRNAs (PIWI associated small RNAs), or their precursors. Selective miRNAs and piRNAs localize to chromosome cores, telomeres and the sex body of spermatocytes. These RNAs have not previously been detected in meiotic nuclei. These RNAs appear to associate with the nucleolus of the Sertoli cells as well as with the dense body. While in MIWI-null male mice the nucleolar signal from miRNA and piRNA probes in Sertoli cells is largely diminished, a differential regulation must exist in meiotic nuclei since the localization of these two components appears to be unaffected in the null animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aravin A, Gaidatzis D, Pfeffer S et al. (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442: 203–207.

    PubMed  CAS  Google Scholar 

  • Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10: 1813–1819.

    Article  PubMed  CAS  Google Scholar 

  • Baker SM, Plug AW, Prolla TA et al. (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13: 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6: 989–998.

    Article  PubMed  CAS  Google Scholar 

  • Bond VC, Wold B (1993) Nucleolar localization of myc transcripts. Mol Cell Biol 13: 3221–3230.

    PubMed  CAS  Google Scholar 

  • Borts RH, Chambers SR, Abdullah MF (2000) The many faces of mismatch repair in meiosis. Mutat Res 451: 129–150.

    PubMed  CAS  Google Scholar 

  • Brown DD, Gurdon JB (1964) Absence of ribosomal RNA synthesis in the anucleolate mutant of Xenopus laevis. Proc Natl Acad Sci USA 51: 139–146.

    Article  PubMed  Google Scholar 

  • Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13: 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Cataldo C, Souchier C, Stahl A. (1988) Three-dimensional ultrastructure and quantitative analysis of the human Sertoli cell nucleolus. Biol Cell 63: 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ et al. (2002) Genomic instability in mice lacking histone H2AX. Science 296: 922–927.

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM et al. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228–233.

    Article  PubMed  CAS  Google Scholar 

  • Crackower MA, Kolas NK, Noguchi J et al. (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 300: 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2: 819–830.

    Article  PubMed  CAS  Google Scholar 

  • Devictor M, Hartung M, Stahl A (1984) Distribution of fibrillar centers and silver-stained components in the nucleolus of human Sertoli cells. Biol Cell 50: 103–106.

    PubMed  CAS  Google Scholar 

  • Dix DJ. (1997). Hsp70 expression and function during gametogenesis. Cell Stress Chaperones 2: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW et al. (1997) HSP70–2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124: 4595–4603.

    PubMed  CAS  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994) Synaptonemal complex proteins: occurence, epitope mapping and chromosome disjunction. J Cell Sci 107: 2749–2760.

    PubMed  CAS  Google Scholar 

  • Dresser ME, Moses MJ (1980) Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma 76: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Edelmann W, Cohen PE, Kane M et al. (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  • Edelmann W, Cohen PE, Kneitz B et al. (1999) Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Esponda P, Stockert JC (1971) Localization of RNA in the synaptinemal complex. J Ultrastruct Res 35: 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A et al. (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4: 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Geeta Vani R, Varghese CM, Rao MR (1999) Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis. Genomics 62: 460–467.

    Article  PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442: 199–202.

    PubMed  Google Scholar 

  • Grivna ST, Beyret E, Wang Z, Lin H (2006a) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20: 1709–1714.

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Pyhtila B, Lin H (2006b) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 103: 13415–13420.

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Martinez-Exposito MJ, Engel W, Schmid M (1996) Interphase chromosome arrangement in Sertoli cells of adult mice. Biol Reprod 54: 980–986.

    Article  PubMed  CAS  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Hartung M, Stahl A (1976) Incorporation of tritiated uridine during pachytene and diplotene stages in the oocytes of the Japanese quail (Coturnix coturnix japonica). Experientia 32: 96–98.

    Article  PubMed  CAS  Google Scholar 

  • Heyting C, Dietrich AJ, Redeker EJO, Vink AC (1985) Structure and composition of synaptonemal complexes, isolated from rat spermatocytes. Eur J Cell Biol 36: 307–314.

    PubMed  CAS  Google Scholar 

  • Hotta Y, Stern H (1981) Small nuclear RNA molecules that regulate nuclease accessibility in specific chromatin regions of meiotic cells. Cell 27: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Hotta Y, Tabata S, Stubbs L, Stern H (1985) Meiosis-specific transcripts of a DNA component replicated during chromosome pairing: homology across the phylogenetic spectrum. Cell 40: 785–793.

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E et al. (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129: 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Fender S (2003) Molecular aspects of XY body formation. Cytogenet Genome Res 103: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Johnson KJ, Patel SR, Boekelheide K (2000) Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Endocrinology 141: 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades M, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57: 19–53.

    Article  PubMed  CAS  Google Scholar 

  • Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA 101: 16583–16587.

    Article  PubMed  CAS  Google Scholar 

  • Khazanehdari KA, Borts RH (2000) EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109: 94–102.

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL (1975) Structural and transcriptional features of the mouse spermatid genome. J Cell Biol 65: 258–270.

    Article  PubMed  CAS  Google Scholar 

  • Kleene KC (2001) A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 106: 3–23.

    Article  PubMed  CAS  Google Scholar 

  • Kolas NK, Marcon E, Crackower MA et al. (2005) Mutant meiotic chromosome core components in mice can cause apparent sexual dimorphic endpoints at prophase or X-Y defective male-specific sterility. Chromosoma 114: 92–102.

    Article  PubMed  Google Scholar 

  • Kotaja N, Bhattacharyya SN, Jaskiewicz L et al. (2006) The chromatoid body of male germ cells: Similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103: 2647–2652.

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Yomogida K et al. (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108: 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara T, Horikoshi M (2004) A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat Struct Mol Biol 11: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12: 735–739.

    Article  PubMed  CAS  Google Scholar 

  • Li CF, Pontes O, El-Shami M et al. (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126: 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2007) piRNAs in the germ line. Science 316: 397.

    Article  PubMed  CAS  Google Scholar 

  • Lipkin SM, Moens PB, Wang V et al. (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31: 385–390.

    PubMed  CAS  Google Scholar 

  • Marcon E, Moens PB (2005) The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. Bioessays 27: 795–808.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey JR, Berg WM, Paragioudakis SJ et al. (1992) Differential transcription of Pgk genes during spermatogenesis in the mouse. Dev Biol 154: 160–168.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey JR, Watson C, Atencio J et al. (2002) X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse. Genesis 34: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Moens PB (1995) Histones H1 and H4 on surface-spread meiotic chromosomes. Chromosoma 104: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Tarsounas M, Morita T et al. (1999) The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al. (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8: 278–284.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Osada H, Takahashi T (2007) MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28: 2–12.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26: 3871–3876.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T, Politz JC (2000) The nucleolus and the four ribonucleoproteins of translation. J Cell Biol 148: 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Perera D, Perez-Hidalgo L, Moens PB et al. (2004) TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol Biol Cell 15: 1568–1579.

    Article  PubMed  CAS  Google Scholar 

  • Perry RP (1962) The cellular sites of synthesis of ribosomal and 4S RNA. Proc Natl Acad Sci USA 48: 2179–2186.

    Article  PubMed  CAS  Google Scholar 

  • Perry RP, Errera M (1961) The role of the nucleolus in ribonucleic acid-and protein synthesis. I. Incorporation of cytidine into normal and nucleolar inactivated HeLa cells. Biochim Biophys Acta 49: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Pillai R, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Science STKE 367.

  • Politz JC, Zhang F, Pederson T (2006) MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA 103: 18957–18962.

    Article  PubMed  CAS  Google Scholar 

  • Pontes O, Li CF, Nunes PC et al. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (1999) Cloning, characterization, and localization of mouse and human SPO11. Genomics 61: 156–169.

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.

    Article  PubMed  CAS  Google Scholar 

  • Schmiesing JA, Gregson HC, Zhou S, Yokomori K (2000) A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol 20: 6996–7006.

    Article  PubMed  CAS  Google Scholar 

  • Song L, Meng-Hsuan H, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104: 5437–5442.

    Article  PubMed  CAS  Google Scholar 

  • Takanari H, Pathak S, Hsu TC (1982) Dense bodies in silver-stained spermatocytes of the Chinese hamster: behavior and cytochemical nature. Chromosoma 86: 359–373.

    Article  PubMed  CAS  Google Scholar 

  • Thiry M (1993) Ultrastructural distribution of DNA and RNA within the nucleolus of human Sertoli cells as seen by molecular immunocytochemistry. J Cell Sci 105: 33–39

    PubMed  CAS  Google Scholar 

  • Tres LL, Kierszenbaum AL (1975) Transcription during mammalian spermatogenesis with special reference to Sertoli cells. Curr Top Mol Endocrinol 2: 455–478.

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O et al. (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37: 41–47.

    PubMed  CAS  Google Scholar 

  • Vazquez-Nin GH, Echeverria OM (1976) Ultrastructural study on the meiotic prophase nucleus of rat oocytes. Acta Anat (Basel) 96: 218–231.

    CAS  Google Scholar 

  • Viera A, Gómez R, Parra MT, Schmiesing JA, Yokomori K, Rufas JS, Suja JA (2007) Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS ONE 2: e783.

    Article  PubMed  Google Scholar 

  • Wassenegger M (2005) The role of RNAi machinery in heterochromatin formation. Cell 122: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Kuo ML, Bothner B et al. (2000) Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20: 2517–2528.

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Aprelikova O, Moens P, Deng CX, Furth PA (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130: 2001–2012.

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210: 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xiong Y (1999) Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3: 579–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Marcon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables

(DOC 52 KB)

Supplementary Figure 1

Electronimicroscopic images of sex chromatin-associated dense body in mice and hamster spermatocytes. The dense body is marked with an arrow. In the hamster, two bodies are present in early pachytene that later fuse to form one body. In the mouse, only one body is present. In early pachytene, the body can be found near or away from the XY bivalent, while during later stages it is found within the sex body. XY, sex chromosomes; Db, dense body; ddb, double dense body. (TIFF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcon, E., Babak, T., Chua, G. et al. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 16, 243–260 (2008). https://doi.org/10.1007/s10577-007-1190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1190-6

Key words

Navigation