Skip to main content
Log in

Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Radiation exposure is an occupational hazard for military personnel, some health care professionals, airport security screeners, and medical patients, with some individuals at risk for acute, high-dose exposures. Therefore, the biological effects of radiation, especially the potential for chromosome damage, are major occupational and health concerns. However, the biophysical mechanisms of chromosome instability subsequent to radiation-induced DNA damage are poorly understood. It is clear that interphase chromosomes occupy discrete structural and functional subnuclear domains, termed chromosome territories (CT), which may be organized into ‘neighborhoods’ comprising groups of specific CTs. We directly evaluated the relationship between chromosome positioning, neighborhood composition, and translocation partner choice in primary lymphocytes, using a cell-based system in which we could induce multiple, concentrated DNA breaks via high-dose irradiation. We critically evaluated mis-rejoining profiles and tested whether breaks occurring nearby were more likely to fuse than breaks occurring at a distance. We show that CT neighborhoods comprise heterologous chromosomes, within which inter-CT distances directly relate to translocation partner choice. These findings demonstrate that interphase chromosome arrangement is a principal factor in genomic instability outcomes in primary lymphocytes, providing a structural context for understanding the biological effects of radiation exposure, and the molecular etiology of tumor-specific translocation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsuaga J, Greulich-Bode KM, Vazquez M et al. (2004) Chromosome spatial clustering inferred from radiogenic aberrations. Int J Radiat Biol 80: 507–15.

    Article  CAS  PubMed  Google Scholar 

  • Aten JA, Stap J, Krawczyk PM et al. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303: 92–5.

    Article  CAS  PubMed  Google Scholar 

  • Berr A, Pecinka A, Meister A et al. (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J 48: 771–83.

    Article  CAS  PubMed  Google Scholar 

  • Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10: 707–15.

    Article  CAS  PubMed  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138.

    Article  PubMed  Google Scholar 

  • Chaikin PM, Donev A, Man W, Stillinger FH and Torquato S (2006) Some observations on the random packing of hard ellipsoids. Ind Eng Chem Res 45: 6960–965.

    Article  CAS  Google Scholar 

  • Cornforth MN (2006) Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair (Amst) 5: 1182–191.

    Article  CAS  Google Scholar 

  • Cornforth MN, Greulich-Bode KM, Loucas BD et al. (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159: 237–44.

    Article  CAS  PubMed  Google Scholar 

  • Couedel C, Mills KD, MBarchi KD et al. (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18: 1293–304.

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–01.

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Kreth G, Koester H et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179–12.

    CAS  PubMed  Google Scholar 

  • Cremer M, Kupper K, Wagler B et al. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162: 809–20.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–21.

    Article  CAS  PubMed  Google Scholar 

  • Donev A, Cisse I, Sachs D et al. (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303: 990–93.

    Article  CAS  PubMed  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356: 297–10.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118: 555–66.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242: 283–36.

    Article  CAS  PubMed  Google Scholar 

  • Hlatky L, Sachs RK, Vazquez M, Cornforth MN (2002) Radiation-induced chromosome aberrations: insights gained from biophysical modeling. Bioessays 24: 714–23.

    Article  PubMed  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800–02.

    Article  Google Scholar 

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society B 30: 582–98.

    Google Scholar 

  • Khalil A, Grant JL, Caddle LB, Aztema E, Mills KD, Arneodo A (in press) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosome Res.

  • Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86: 2803–812.

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445: 379–81.

    Article  CAS  PubMed  Google Scholar 

  • Meaburn K, Misteli JT, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17: 80–0.

    Article  CAS  PubMed  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW (2004) Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18: 1283–2.

    Article  CAS  PubMed  Google Scholar 

  • Mora L, Sanchez I, Garcia M, Ponsa M (2006) Chromosome territory positioning of conserved homologous chromosomes in different primate species. Chromosoma 115: 367–75.

    Article  PubMed  Google Scholar 

  • Murmann AE, Gao J, Encinosa M et al. (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311: 14–6.

    Article  CAS  PubMed  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA et al. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5: e192.

    Article  PubMed  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12: 425–32.

    Article  CAS  PubMed  Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004a) Tissue-specific spatial organization of genomes. Genome Biol 5: R44.

    Article  Google Scholar 

  • Parada LA, Sotiriou S, Misteli T (2004b) Spatial genome organization. Exp Cell Res 296: 64–0.

    Article  CAS  Google Scholar 

  • Shopland LS, Lynch CR, Peterson KA et al. (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174: 27–8.

    Article  CAS  PubMed  Google Scholar 

  • Stadler S, Schnapp V, Mayer R et al. (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5: 44.

    Article  PubMed  Google Scholar 

  • Tanabe H, Muller S, Neusser M et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99: 4424–429.

    Article  CAS  PubMed  Google Scholar 

  • Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14: 166–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Mills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brianna Caddle, L., Grant, J.L., Szatkiewicz, J. et al. Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells. Chromosome Res 15, 1061–1073 (2007). https://doi.org/10.1007/s10577-007-1181-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1181-7

Key words

Navigation