Skip to main content

Advertisement

Log in

CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJα motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJα motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJα motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJα motif to type A monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov IA, Kazakov A, Tumeneva I, Shepelev V, Yurov Y (2001) Alpha-satellite DNA of primates: old and new families. Chromosoma 110: 253–266.

    PubMed  CAS  Google Scholar 

  • Alexandrov IA, Mashkova TD, Akopian TA et al. (1991) Chromosome-specific alpha satellites: two distinct families on human chromosome 18. Genomics 11: 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov IA, Mitkevich SP, Yurov YB (1988) The phylogeny of human chromosome-specific alpha satellites. Chromosoma (Berlin) 110: 253–266.

    Google Scholar 

  • Archidiacono N, Antonacci R, Marzella R, Finelli P, Lonoce A, Rocchi M (1995) Comparative mapping of human alphoid sequences in great apes using fluorescence in situ hybridization. Genomics 25: 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Baldini A, Smith DI, Rocchi M, Miller OJ, Miller DA (1989) A human alphoid DNA clone from the EcoRI dimeric family: genomic and internal organization and chromosomal assignment. Genomics 5: 822–828.

    Article  PubMed  CAS  Google Scholar 

  • Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33: 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Berge P, Pomeau Y, Vidal C (1984) Order Within Chaos. New York: Wiley.

    Google Scholar 

  • Choo KHA (1997) The Centromere. Oxford: Oxford University Press.

    Google Scholar 

  • Choo KH, Brown R, Webb G, Craig IW, Filby RG (1987) Genomic organization of human centromeric alpha satellite DNA: characterization of a chromosome 17 alpha satellite sequence. DNA 6: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Choo KH, Vissel B, Nagy A, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes and derivation of a new consensus sequence. Nucleic Acids Res 19: 1179–1182.

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.

    Article  PubMed  CAS  Google Scholar 

  • D’Aiuto L, Antonacci R, Marzella R, Archidiacono N, Rocchi M (1993) Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence. Genomics 18: 230–235.

    Article  PubMed  CAS  Google Scholar 

  • Devilee P, Kievits T, Waye JS, Pearson PL, Willard HF (1988) Chromosome-specific alpha satellite DNA: isolation and mapping of a polymorphic alphoid repeat from human chromosome 10. Genomics 3: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Donlon TA, Burns GA, Latt SA, Mulholland J, Wyman AR (1987) A chromosome 8-enriched alphoid repeat. Cytogenet Cell Genet 46: 607.

    Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Sullivan KF, Machlin PS et al. (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104: 817–829.

    Article  PubMed  CAS  Google Scholar 

  • Finelli P, Antonacci R, Marzella R, Lonoce A, Archidiacono N, Rocchi M (1996) Structural organization of multiple alphoid arrays coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. Genomics 38: 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Gaff C, du Sart D, Kalitsis P, Iannello R, Nagy A, Choo KH (1994) A novel nuclear protein binds centromeric alpha satellite DNA. Hum Mol Genet 3: 711–716.

    PubMed  CAS  Google Scholar 

  • Ge Y, Wagner MJ, Siciliano M, Wells DE (1992) Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. Genomics 13: 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697–709.

    PubMed  CAS  Google Scholar 

  • Haaf T, Mater AG, Wienberg J, Ward DC (1995) Presence and abundance of CENP-B box sequences in great ape arrays of primate-specific alpha-satellite DNA. J Mol Evol 41: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (2002) Near the edge of a chromosomes ‘black hole’. Trends Genet 18: 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Hulsebos T, Schonk D, van Dalen I et al. (1988) Isolation and characterization of alphoid DNA sequences for the pericentric regions of chromosomes 4, 5, 9, and 19. Cytogenet Cell Genet 47: 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3: 1245–1257.

    PubMed  CAS  Google Scholar 

  • Iwahara J, Kigawa T, Kitagawa K, Masumoto H, Okazaki T, Yokoyama S (1998) A helix-turn-helix structure unit in human centromere protein B (CENP-B). EMBO J 17: 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen AL, Bostock CJ, Bak AL (1986) Chromosome-specific subfamilies within human alphoid repetitive DNA. J Mol Biol 187: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Kazakov AE, Shepelov VA, Tumeneva IG, Alexandrov AA, Yurov YB, Alexandrov IA (2003) Interspersed repeats are found predominantly in the ‘old’ alpha satellite families. Genomics 82: 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Kouprina N, Ebersole T, Koriabine M et al. (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31: 922–934.

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC (1997) Human centromeric DNAs. Hum Genet 100: 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Looijenga LH, Oosterhuis JW, Smit VT, Wessels JW, Mollevanger P, Devilee P (1992) Alpha satellite DNAs on chromosomes 10 and 12 are both members of the dimeric suprachromosomal subfamily, but display little identity at the nucleotide sequence level. Genomics 13: 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  • Mahtani MM, Willard HF (1990) Pulsed-field gel analysis of a satellite DNA at human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics 7: 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Maio JJ (1971) DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol 56: 579–595.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Wu JC (1978) Homology between human and simian repeated DNA. Nature 276: 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Mashkova TD, Akopian TA, Romanova LY et al. (1994) Genomic organization, sequence and polymorphism of the human chromosome 4 specific alpha satellite DNA. Gene 140: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963–1973.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Nakano M, Ohzeki J (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12: 543–556.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro Y, Okazaki T (1993) Properties of CENP-B and its target sequence in a satellite DNA. In Chromosome Segregation and Aneuploidy. Berlin: Springer-Verlag, pp. 31–43.

    Google Scholar 

  • Muro Y, Masumoto H, Yoda K, Nozaki N, Ohashi M, Okazaki T (1992) Centromere protein B assembles human centromeric alpha satellite DNA at 17-bp sequence, CENP-B box. J Cell Biol 116: 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Matsumoto H (2002) CENP-B box is required for the novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159: 765–775.

    Article  PubMed  CAS  Google Scholar 

  • Paar V, Pavin N, Rosandić M et al. (2005) ColorHOR – novel graphical algorithm for fast scan of alpha satellite higher-order repeats and HOR annotation for GenBank sequence of human genome. Bioinformatics 21: 846–852.

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Cooke CA, Earnshaw WC (1990) Structure of the human centromere at metaphase. Trends Biochem Sci 15: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Saitoh N, Goldberg I, Earnshaw WC (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. J Cell Biol 116: 1081–1093.

    Article  PubMed  CAS  Google Scholar 

  • Puechberty J, Laurent AM, Gimenez S et al. (1999) Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Genomics 56: 274–287.

    Article  PubMed  CAS  Google Scholar 

  • Romanova LY, Deriagin GV, Mashkova TD et al. (1996) Evidence for selection of alpha satellite DNA: the central role of CENP-B/pJα binding region. J Mol Biol 261: 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Rosandić M, Paar V, Basar I (2003a) Key-string segmentation algorithm and higher-order repeat 16mer (54 copies) in human alpha satellite DNA in chromosome 7. J Theor Biol 221: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Rosandić M, Paar V, Glunčić M, Basar I, Pavin N (2003b) Key-string algorithm – novel approach to computational analysis of repetitive sequences in human centromeric DNA. Croat Med J 44: 386–406.

    PubMed  Google Scholar 

  • Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Schindelhauer D, Schwarz T (2002) Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. Genome Res 12: 1815–1826.

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Nureki O, Kurumizaka H et al. (2001) Crystal structure of the CENP-B protein–DNA complex: the DNA-binding domains CENP-B induce kinks in the CENP-B box DNA. EMBO J 20: 6612–6618.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Kurumizaka H, Yokoyama S (2004) CpG methylation of the CENP-B box reduces human CENP-B binding. FEBS J 272: 282–289.

    Article  CAS  Google Scholar 

  • Trowell HE, Nagy A, Vissel B, Choo KH (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum Mol Genet 2: 1639–1649.

    PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Willard HF (1993) Mammalian chromosome structure. Curr Opin Genet Dev 1993: 390–397.

    Article  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Willard HF (1996) Evolution of centromeric alpha satellite DNA: molecular organization within and between human and primate chromosomes. In Human Genome Evolution. Oxford: BIOS Scientific, pp. 121–145.

    Google Scholar 

  • Warburton PE, Waye JS, Willard HF (1993) Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol 13: 6520–6529.

    PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 13: 2731–2743.

    PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6: 3156–3165.

    PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1987) Nucleotide sequence heterogeneity of alpha satellite DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res 15: 7549–7569.

    PubMed  CAS  Google Scholar 

  • Waye JS, Creeper LA, Willard HF (1987b) Organization and evolution of alpha satellite DNA from human chromosome 11. Chromosoma 95: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, Durfy SJ, Pinkel D et al. (1987c) Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Genomics 1: 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, England SB, Willard HF (1987a) Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol 7: 349–356.

    PubMed  CAS  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86: 9394–9398.

    Article  PubMed  CAS  Google Scholar 

  • Wevrick R, Willard HF (1991) Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19: 2295–2301.

    PubMed  CAS  Google Scholar 

  • Wevrick R, Willard VP, Willard HF (1992) Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14: 912–923.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37: 524–532.

    PubMed  CAS  Google Scholar 

  • Willard HF (1991) Evolution of alpha satellite. Curr Opin Genet Dev 1: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome-specific arrays of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal arrays and evidence for an ancestral pentameric repeat. J Mol Evol 25: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Greig GM, Powers VE, Waye JS (1987) Molecular organization and haplotype analysis of centromeric DNA from human chromosome 17: implications for linkage in neurofibromatosis. Genomics 1: 368–373.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Waye JS, Skolnick MH, Schwartz CE, Powers VE, England SB (1986) Detection of restriction fragment polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Proc Natl Acad Sci USA 83: 5611–5615.

    Article  PubMed  CAS  Google Scholar 

  • Wu JS, Kidd KK (1990) Extensive sequence polymorphisms associated with chromosome 10 alpha satellite DNA and its close linkage to markers from the pericentromeric region. Hum Genet 84: 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Yang TP, Hansen SK, Oishi KK, Ryder OA, Hamkalo BA (1982) Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc Natl Acad Sci USA 79: 6593–6597.

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Okazaki T (1997) Site-specific base deletions in human alpha-satellite monomer DNAs are associated with regularly distributed CENP-B boxes. Chromosome Res 5: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T (1998) In vitro assembly of the CENP-B/alpha satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Genes Cells 3: 533–548.

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Nakamura T, Masumoto H et al. (1996) Centromere protein B of African green monkey cells: gene structure, cellular expression and centromeric localization. Mol Cell Biol 16: 5169–5177.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Paar.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosandić, M., Paar, V., Basar, I. et al. CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosome Res 14, 735–753 (2006). https://doi.org/10.1007/s10577-006-1078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1078-x

Key words

Navigation