Skip to main content
Log in

Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors—Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arevalo MA, Iñigo Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16:17–29

    Article  CAS  PubMed  Google Scholar 

  • Bingham D, Macrae IM, Carswell HV (2005) Detrimental effects of 17beta-oestradiol after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 25:414–420

    Article  CAS  PubMed  Google Scholar 

  • Bondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-κB is a key event in brain tolerance. J Neurosci 21:4668–4677

    Google Scholar 

  • Brann D, Raz L, Wang R, Vadlamudi R, Zhang Q (2012) Oestrogen signalling and neuroprotection in cerebral ischaemia. J Neuroendocrinol 24:34–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YC, Lee JH, Hong KW, Lee KS (2004) 17 Beta-estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats. Fundam Clin Pharmacol 18(5):547–557

    Article  CAS  PubMed  Google Scholar 

  • Costain WJ, Rasquinha I, Sandhu JK, Rippstein P, Zurakowski B, Slinn J, MacManus JP, Stanimirovic DB (2008) Cerebral ischemia causes dysregulation of synaptic adhesion in mouse synaptosomes. J Cereb Blood Flow Metab 28(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377

    Article  CAS  PubMed  Google Scholar 

  • Drakulić D, Veličković N, Stanojlović M, Grković I, Mitrović N, Lavrnja I, Horvat A (2013) Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. J Neuroendocrinol 25:605–616

    Article  PubMed  Google Scholar 

  • Dubal DB, Wise PM (2001) Neuroprotective effects of estradiol in middle-aged female rats. Endocrinology 142(1):43–48

    CAS  PubMed  Google Scholar 

  • Dubal DB, Kashon ML, Pettigrew LC, Ren JM, Finklestein SP, Rau SW, Wise PM (1998) Estradiol protects against ischemic injury. J Cereb Blood Flow Metab 18(11):1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Dubal DB, Shughrue PJ, Wilson ME, Merchenthaler I, Wise PM (1999) Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. J Neurosci 19(15):6385–6393

    CAS  PubMed  Google Scholar 

  • Friguls B, Petegnief V, Justicia C, Pallàs M, Planas AM (2002) Activation of Erk and Akt signaling in focal cerebral ischemia: modulation by TGF-alpha and involvement of NMDA receptor. Neurobiol Dis 11:443–456

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63:29–60

    Article  CAS  PubMed  Google Scholar 

  • Gibson CL (2013) Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab 33:1355–1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon KB, Macrae IM, Carswell HV (2005) Effects of 17beta-oestradiol on cerebral ischaemic damage and lipid peroxidation. Brain Res 1036:155–162

    Article  CAS  PubMed  Google Scholar 

  • Grodstein F, Manson JE, Stampfer MJ, Rexrode K (2008) Postmenopausal hormone therapy and stroke: role of time since menopause and age at initiation of hormone therapy. Arch Intern Med 168(8):861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harukuni I, Hurn PD, Crain BJ (2001) Deleterious effect of beta-estradiol in a rat model of transient forebrain ischemia. Brain Res 900:137–142

    Article  CAS  PubMed  Google Scholar 

  • Hofmeijer J, van Putten MJ (2012) Ischemic cerebral damage: an appraisal of synaptic failure. Stroke 43:607–615

    Article  PubMed  Google Scholar 

  • Jia J, Guan D, Zhu W, Alkayed NJ, Wang MM, Hua Z, Xu Y (2009) Estrogen inhibits Fas-mediated apoptosis in experimental stroke. Exp Neurol 215(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Jover T, Tanaka H, Calderone A, Oguro K, Bennett MVL, Etgen AM, Zukin RS (2002) Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci 22:2115–2124

    CAS  PubMed  Google Scholar 

  • Jover-Menguala T, Miyawakia T, Latuszeka A, Alborchb E, ZukinaRS Suzanne, Etgen AM (2010) Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway. Brain Res 1321C:1–12

    Article  Google Scholar 

  • Koellhoffer EC, McCullough LD (2013) The effects of estrogen in ischemic stroke. Transl Stroke Res 4:390–401

    Article  CAS  PubMed  Google Scholar 

  • Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM (2009) Estradiol rescues neurons from global ischemia induced cell death: multiple cellular pathways of neuroprotection. Steroids 74:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Siegel M, Yuan M, Zeng Z, Finnucan L, Persky R, Hurn PD, McCullough LD (2011) Estrogen enhances neurogenesis and behavioral recovery after stroke. J Cereb Blood Flow Metab 31(2):413–425

    Article  CAS  PubMed  Google Scholar 

  • Li V, Kong J, Szelemej P, Bi X (2012) Delayed neuronal death in ischemic stroke: molecular pathways. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  • Liu M, Dziennis S, Hurn PD, Alkayed NJ (2009) Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 27(3):163–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2009) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta DeltaC(T)) method. Methods 25:402–408

    Article  Google Scholar 

  • Lobo RA (2013) Where are we 10 years after the Women’s Health Initiative? J Clin Endocrinol Metab 98(5):1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Ma YL, Qin P, Li Y, Shen L, Wang SQ, Dong HL, Hou WG, Xiong LZ (2013) The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion. BMC Neurosci 14:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Manthey D, Behl C (2006) From structural biochemistry to expression profiling: neuroprotective activities of estrogen. Neuroscience 138(3):845–850

    Article  CAS  PubMed  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  CAS  PubMed  Google Scholar 

  • McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25:502–512

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin B (2004) The kinder side of killer proteases: caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis 9:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrone AB, Simpkins JW, Barr TL (2014) 17β-estradiol and inflammation: implications for ischemic stroke. Aging Dis 5(5):340–345

    PubMed  PubMed Central  Google Scholar 

  • Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:e93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwin BB (2009) Estrogen therapy: is time of initiation critical for neuroprotection? Nat Rev Endocrinol 5:620–627

    Article  CAS  PubMed  Google Scholar 

  • Simpkins JW, Rajakumar G, Zhang YQ, Simpkins CE, Greenwald D, Yu CJ, Bodor N, Day AL (1997) Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neurosurg 87(5):724–730

    Article  CAS  PubMed  Google Scholar 

  • Singer CA, Rogers KL, Dorsa DM (1998) Modulation of Bcl-2 expression: a potential component of estrogen protection in NT2 neurons. NeuroReport 9(11):2565–2568

    Article  CAS  PubMed  Google Scholar 

  • Singh M (2001) Ovarian hormones elicit phosphorylation of Akt and extracellular-signal regulated kinase in explants of the cerebral cortex. Endocrine 14:407–415

    Article  CAS  PubMed  Google Scholar 

  • Stanojlović M, Guševac I, Grković I, Mitrović N, Horvat A, Drakulić D (2014a) Time-related sex differences in cerebral-hypoperfusion induced brain injury. Arch Biol Sci Belgrade 66(4):1673–1680

    Article  Google Scholar 

  • Stanojlović M, Horvat A, Guševac I, Grković I, Mitrović N, Buzadžić I, Drakulić D (2014b) Time course of cerebral hypoperfusion-induced neurodegenerative changes in the cortex of male and female rats. Folia Biol 60:123–132

    Google Scholar 

  • Stanojlović M, Zlatković J, Guševac I, Grković I, Mitrović N, Zarić M, Horvat A, Drakulić D (2015) Repeated low-dose 17β-estradiol treatment prevents activation of apoptotic signaling both in the synaptosomal and cellular fraction in rat prefrontal cortex following cerebral ischemia. Neurochem Int. doi:10.1016/j.neuint.2015.03.002

    PubMed  Google Scholar 

  • Stoltzner SE, Berchtold NC, Cotman CW, Pike CJ (2001) Estrogen regulates bcl-x expression in rat hippocampus. NeuroReport 12(13):2797–2800

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, Brann DW, Wang R (2014) GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 387(1–2):52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada K, Kaziro Y, Satoh T (2000) Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivationin hematopoietic cells. Biochem Biophys Res Commun 267:449–455

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang Q-G, Han D, Xu J, Lü Q, Zhang G-Y (2006) Inhibition of MLK3-MKK4/7-JNK1/2 pathway by Akt1 in exogenous estrogen-induced neuroprotection against transient global cerebral ischemia by a non-genomic mechanism in male rats. J Neurochem 99(6):1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Shi J, Day AL, Simpkins JW (2000) Estradiol exerts neuroprotective effects when administered after ischemic insult. Stroke 31(3):745–749

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhang QG, Zhou C, Yang F, Zhang Y, Wang R, Brann DW (2010) Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One 5(5):e9851

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by Ministry of Education, Science and Technological Development of Republic of Serbia, Project Nos. 173044 and 41014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunja Drakulić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanojlović, M., Guševac, I., Grković, I. et al. Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus. Cell Mol Neurobiol 36, 989–999 (2016). https://doi.org/10.1007/s10571-015-0289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0289-0

Keywords

Navigation