Skip to main content

Advertisement

Log in

Neurovascular and Cognitive failure in Alzheimer’s Disease: Benefits of Cardiovascular Therapy

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahamson EE, Foley LM, Dekosky ST, Hitchens TK, Ho C, Kochanek PM et al (2013) Cerebral blood flow changes after brain injury in human amyloid-beta knock-in mice. J Cereb Blood Flow Metab 33(6):826–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T et al (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276(52):48623–48626

    Article  CAS  PubMed  Google Scholar 

  • Albiston AL, Fernando RN, Yeatman HR, Burns P, Ng L, Daswani D et al (2010) Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol Learn Mem 93(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Albiston AL, Diwakarla S, Fernando RN, Mountford SJ, Yeatman HR, Morgan B et al (2011) Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 164(1):37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashby EL, Kehoe PG (2013) Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer’s disease. Expert Opin Investig Drugs 22(10):1229–1242

    Article  CAS  PubMed  Google Scholar 

  • Aucoin JS, Jiang P, Aznavour N, Tong XK, Buttini M, Descarries L et al (2005) Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer’s disease. Neuroscience 132(1):73–86

    Article  CAS  PubMed  Google Scholar 

  • Badhwar A, Lerch JP, Hamel E, Sled JG (2013) Impaired structural correlates of memory in Alzheimer’s disease mice. NeuroImage Clin 6(3):290–300

    Article  Google Scholar 

  • Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M et al (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23(24):8453–8459

    CAS  PubMed  Google Scholar 

  • Benicky J, Sanchez-Lemus E, Pavel J, Saavedra JM (2009) Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery. Cell Mol Neurobiol 29(6–7):781–792

    Article  CAS  PubMed  Google Scholar 

  • Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW (2011) Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J Pharmacol Exp Ther 339(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch S, Obari D, Girouard H (2015) Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation 22(3):159–167

    CAS  PubMed  Google Scholar 

  • Braszko JJ, Walesiuk A, Wielgat P (2006) Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV. J Renin Angiotensin Aldosterone Syst 7(3):168–174

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA (2011) Atorvastatin and Abeta(1-40): not as simple as cholesterol reduction in brain and relevance to Alzheimer disease. Exp Neurol 228(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Cantin S, Villien M, Moreaud O, Tropres I, Keignart S, Chipon E et al (2011) Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. Neuroimage 58(2):579–587

    Article  CAS  PubMed  Google Scholar 

  • Carlsson CM, Gleason CE, Hess TM, Moreland KA, Blazel HM, Koscik RL et al (2008) Effects of simvastatin on cerebrospinal fluid biomarkers and cognition in middle-aged adults at risk for Alzheimer’s disease. J Alzheimers Dis 13(2):187–197

    CAS  PubMed  Google Scholar 

  • Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24(1):19–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan NB, Siegel GJ, Feinstein DL (2004) Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain. Neurochem Res 29(10):1897–1911

    Article  CAS  PubMed  Google Scholar 

  • Claassen JA (2015) New cardiovascular targets to prevent late onset Alzheimer disease. Eur J Pharmacol. doi:10.1016/j.ejphar.2015.05.022

    PubMed  Google Scholar 

  • Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD (2008) Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology 71(5):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH et al (2010) Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res 13(2–3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis 26(4):699–708

    PubMed  Google Scholar 

  • Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142(1–2):17–30

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190

    Article  PubMed  Google Scholar 

  • den Abeelen AS, Lagro J, van Beek AH, Claassen JA (2014) Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer’s disease. Curr Alzheimer Res 11(1):11–17

    Article  CAS  Google Scholar 

  • Deschaintre Y, Richard F, Leys D, Pasquier F (2009) Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology 73(9):674–680

    Article  PubMed  Google Scholar 

  • Diez J (2006) Review of the molecular pharmacology of Losartan and its possible relevance to stroke prevention in patients with hypertension. Clin Ther 28(6):832–848

    Article  CAS  PubMed  Google Scholar 

  • Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K et al (2012) Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135(Pt 10):3039–3050

    Article  PubMed  Google Scholar 

  • Erdos B, Snipes JA, Miller AW, Busija DW (2004) Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 53(5):1352–1359

    Article  PubMed  Google Scholar 

  • Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD (1999) Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354(9182):919–920

    Article  CAS  PubMed  Google Scholar 

  • Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  CAS  PubMed  Google Scholar 

  • Ferrington L, Miners JS, Palmer LE, Bond SM, Povey JE, Kelly PA et al (2011) Angiotensin II-inhibiting drugs have no effect on intraneuronal Abeta or oligomeric Abeta levels in a triple transgenic mouse model of Alzheimer’s disease. Am J Transl Res 3(2):197–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrington L, Palmer LE, Love S, Horsburgh KJ, Kelly PA, Kehoe PG (2012) Angiotensin II-inhibition: effect on Alzheimer’s pathology in the aged triple transgenic mouse. Am J Transl Res 4(2):151–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE et al (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23(27):9116–9122

    CAS  PubMed  Google Scholar 

  • Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E et al (2003) Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens 17(11):781–785

    Article  CAS  PubMed  Google Scholar 

  • Fonseca AC, Proenca T, Resende R, Oliveira CR, Pereira CM (2009) Neuroprotective effects of statins in an in vitro model of Alzheimer’s disease. J Alzheimers Dis 17(3):503–517

    CAS  PubMed  Google Scholar 

  • Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S et al (2009) Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 9(9):1413–1431

    Article  CAS  PubMed  Google Scholar 

  • Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335

    Article  CAS  PubMed  Google Scholar 

  • Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM (2009) Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 80(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Haberl RL, Decker PJ, Einhaupl KM (1991) Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ Res 68(6):1621–1627

    Article  CAS  PubMed  Google Scholar 

  • Hamel E, Nicolakakis N, Aboulkassim T, Ongali B, Tong XK (2008) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93(1):116–120

    Article  CAS  PubMed  Google Scholar 

  • Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH, Koenigsknecht-Talboo J et al (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 28(50):13542–13550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R et al (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging Cell 12(2):224–236

    Article  CAS  PubMed  Google Scholar 

  • Hebert F, Grand’maison M, Ho MK, Lerch JP, Hamel E, Bedell BJ (2013) Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34(6):1644–1652

    Article  PubMed  Google Scholar 

  • Hemming ML, Selkoe DJ, Farris W (2007) Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis 26(1):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28(4):1014–1021

    Article  PubMed  Google Scholar 

  • Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S et al (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-correlation with simultaneous rCBF-PET measurements. Brain Res 755(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Holmberg E, Nordstrom T, Gross M, Kluge B, Zhang SX, Doolen S (2006) Simvastatin promotes neurite outgrowth in the presence of inhibitory molecules found in central nervous system injury. J Neurotrauma 23(9):1366–1378

    Article  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Article  CAS  PubMed  Google Scholar 

  • Hughes M, Snetkov V, Rose RS, Trousil S, Mermoud JE, Dingwall C (2010) Neurite-like structures induced by mevalonate pathway blockade are due to the stability of cell adhesion foci and are enhanced by the presence of APP. J Neurochem 114(3):832–842

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Neuroscience Reviews 5:347–360

    Article  CAS  Google Scholar 

  • Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120(3):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E et al (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2:157–161

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2007) The enigma of mixed dementia. Alzheimer’s Dement J Alzheimer’s Assoc 3(1):40–53

    Article  Google Scholar 

  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S et al (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4(3):289–296

    Article  CAS  PubMed  Google Scholar 

  • Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-beta. J Neurosci 32(46):16458–16465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe PG, Miners S, Love S (2009) Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci 32(12):619–628

    Article  CAS  PubMed  Google Scholar 

  • Kelley BJ, Glasser S (2014) Cognitive effects of statin medications. CNS Drugs 28(5):411–419

    Article  CAS  PubMed  Google Scholar 

  • Kitaguchi H, Tomimoto H, Ihara M, Shibata M, Uemura K, Kalaria RN et al (2009) Chronic cerebral hypoperfusion accelerates amyloid beta deposition in APPSwInd transgenic mice. Brain Res 1294:202–210

    Article  CAS  PubMed  Google Scholar 

  • Kouznetsova E, Klingner M, Sorger D, Sabri O, Grossmann U, Steinbach J et al (2006) Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice. Int J Dev Neurosci 24(2–3):187–193

    Article  CAS  PubMed  Google Scholar 

  • Kozuki M, Kurata T, Miyazaki K, Morimoto N, Ohta Y, Ikeda Y et al (2011) Atorvastatin and pitavastatin protect cerebellar Purkinje cells in AD model mice and preserve the cytokines MCP-1 and TNF-alpha. Brain Res 1388:32–38

    Article  CAS  PubMed  Google Scholar 

  • Kramar EA, Krishnan R, Harding JW, Wright JW (1998) Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow. Regul Pept 74(2–3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Miyazaki K, Kozuki M, Panin VL, Morimoto N, Ohta Y et al (2011) Atorvastatin and pitavastatin improve cognitive function and reduce senile plaque and phosphorylated tau in aged APP mice. Brain Res 1371:161–170

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Kawai H, Miyazaki K, Kozuki M, Morimoto N, Ohta Y et al (2012a) Statins have therapeutic potential for the treatment of Alzheimer’s disease, likely via protection of the neurovascular unit in the AD brain. J Neurol Sci. doi:10.1016/j.jns.2012.06.011

    Google Scholar 

  • Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y et al (2012b) Atorvastatin and pitavastatin reduce senile plaques and inflammatory responses in a mouse model of Alzheimer’s disease. Neurol Res 34(6):601–610

    Article  CAS  PubMed  Google Scholar 

  • Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai AY, Dorr A, Thomason LA, Koletar MM, Sled JG, Stefanovic B et al (2015) Venular degeneration leads to vascular dysfunction in a transgenic model of Alzheimer’s disease. Brain 138(Pt 4):1046–1058

    Article  PubMed  Google Scholar 

  • Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS et al (2009) Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45(4):1107–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange-Asschenfeldt C, Kojda G (2008) Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Exp Gerontol 43(6):499–504

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Albiston AL, Allen AM, Mendelsohn FA, Ping SE, Barrett GL et al (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 124(2):341–349

    Article  CAS  PubMed  Google Scholar 

  • Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60(6):729–739

    Article  CAS  PubMed  Google Scholar 

  • Li G, Larson EB, Sonnen JA, Shofer JB, Petrie EC, Schantz A et al (2007) Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology 69(9):878–885

    Article  CAS  PubMed  Google Scholar 

  • Li G, Shofer JB, Rhew IC, Kukull WA, Peskind ER, McCormick W et al (2010a) Age-varying association between statin use and incident Alzheimer’s disease. J Am Geriatr Soc 58(7):1311–1317

    Article  PubMed  PubMed Central  Google Scholar 

  • Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE et al (2010b) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ et al (2011) Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76(17):1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE et al (2014) Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 9:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33(9):1412–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu S, Tanabe C, Maeda T, Zou K, Komano H (2014) Differential effects of angiotensin II receptor blockers on Abeta generation. Neurosci Lett 567:51–56

    Article  CAS  PubMed  Google Scholar 

  • Llorens-Martin M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J et al (2014) Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Frontiers Neuroanat 8:38

    Google Scholar 

  • Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T et al (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24(7):1132–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Mans RA, Chowdhury N, Cao D, McMahon LL, Li L (2010) Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 166(2):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mans RA, McMahon LL, Li L (2012) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuinness B, Craig D, Bullock R, Passmore P (2009) Statins for the prevention of dementia. Cochrane Database Syst Rev 2:CD003160

    PubMed  Google Scholar 

  • McGuinness B, Craig D, Bullock R, Malouf R, Passmore P (2014) Statins for the treatment of dementia. Cochrane Database Syst Rev 7:CD007514

    PubMed  Google Scholar 

  • Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA, Sultzer DL (2009) The neural correlates of naming and fluency deficits in Alzheimer’s disease: an FDG-PET study. Int J Geriatr Psychiatry 24(8):885–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122(3):293–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE (2014) Simvastatin treatment preserves synaptic plasticity in AbetaPPswe/PS1dE9 mice. J Alzheimers Dis 39(2):315–329

    CAS  PubMed  Google Scholar 

  • Michel MC, Foster C, Brunner HR, Liu L (2013) A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 65(2):809–848

    Article  PubMed  CAS  Google Scholar 

  • Mihos CG, Pineda AM, Santana O (2014) Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res 88:12–19

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A et al (2008) Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun 375(3):446–449

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Iwanami J, Horiuchi M (2012) Roles of brain Angiotensin II in cognitive function and dementia. Int J Hypertens 2012:169649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    CAS  PubMed  Google Scholar 

  • Naveri L, Stromberg C, Saavedra JM (1994) Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 14(6):1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31(6):1354–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P et al (2008) Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 28(37):9287–9296

    Article  CAS  PubMed  Google Scholar 

  • Niwa K, Carlson GA, Iadecola C (2000a) Exogenous A beta1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 20(12):1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S et al (2000b) Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci USA 97(17):9735–9740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C (2002a) Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol 283:H315–H323

    Article  CAS  PubMed  Google Scholar 

  • Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C (2002b) Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 9:61–68

    Article  CAS  PubMed  Google Scholar 

  • Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P et al (2014) Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis 68:126–136

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J et al (2003) Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 24(5):637–643

    Article  CAS  PubMed  Google Scholar 

  • Park L, Anrather J, Forster C, Kazama K, Carlson GA, Iadecola C (2004) Aβ-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cerebr Blood Flow Metab. 24:334–342

    Article  CAS  Google Scholar 

  • Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S et al (2005) NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 25(7):1769–1777

    Article  CAS  PubMed  Google Scholar 

  • Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH et al (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105(4):1347–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park L, Wang G, Zhou P, Zhou J, Pitstick R, Previti ML et al (2011) Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc Natl Acad Sci USA 108(12):5063–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park L, Zhou J, Zhou P, Pistick R, El Jamal S, Younkin L et al (2013) Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc Natl Acad Sci USA 110(8):3089–3094

    Article  PubMed  PubMed Central  Google Scholar 

  • Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J et al (2014) The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction. Nat Commun 5:5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters F, Collette F, Degueldre C, Sterpenich V, Majerus S, Salmon E (2009) The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain 132(Pt 7):1833–1846

    Article  PubMed  Google Scholar 

  • Poduslo JF, Curran GL, Wengenack TM, Malester B, Duff K (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8(4):555–567

    Article  CAS  PubMed  Google Scholar 

  • Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342(8873):697–699

    Article  CAS  PubMed  Google Scholar 

  • Pooler AM, Xi SC, Wurtman RJ (2006) The 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibitor pravastatin enhances neurite outgrowth in hippocampal neurons. J Neurochem 97(3):716–723

    Article  CAS  PubMed  Google Scholar 

  • Rockwood K, Kirkland S, Hogan DB, MacKnight C, Merry H, Verreault R et al (2002) Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 59(2):223–227

    Article  PubMed  Google Scholar 

  • Rosengarten B, Paulsen S, Molnar S, Kaschel R, Gallhofer B, Kaps M (2006) Acetylcholine esterase inhibitor donepezil improves dynamic cerebrovascular regulation in Alzheimer patients. J Neurol 253(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK et al (2015) HMG-CoA reductase inhibitors bind to PPARalpha to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab 22(2):253–265

    Article  CAS  PubMed  Google Scholar 

  • Royea J, Zhang L, Ozcelik S, Tong X-K, Hamel E (2015). Insulin regulated aminopeptidase: a potential cerebrovascular and neuroprotective mechanism in a mouse model of Alzheimer’s disease. In: Brain 2015, the XXVIIth international symposium on cerebral blood flow, metabolism and function

  • Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harbor Perspect Med 2(10):a011452

    Article  CAS  Google Scholar 

  • Samuel F, Reddy J, Kaimal R, Segovia V, Mo H, Hynds DL (2014) Inhibiting geranylgeranylation increases neurite branching and differentially activates cofilin in cell bodies and growth cones. Mol Neurobiol 50(1):49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheibel AB, Duong TH, Jacobs R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21(2):103–107

    Article  CAS  PubMed  Google Scholar 

  • Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons M, Schwarzler F, Lutjohann D, von Bergmann K, Beyreuther K, Dichgans J et al (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ et al (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks DL, Sabbagh M, Connor D, Soares H, Lopez J, Stankovic G et al (2006) Statin therapy in Alzheimer’s disease. Acta Neurol Scand Suppl 185:78–86

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato K et al (2009) Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension 54(6):1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nature Rev Neurol 11(8):457–470

    Article  CAS  Google Scholar 

  • Tong X-K, Hamel E (2015) Simvastatin improves adult hippocampal neuronal maturation by up-regulating the Wnt/β-catenin pathway in a mouse model of Alzheimer’s disease. In: Brain 2015, the XXVIIth international symposium on cerebral blood flow, metabolism and function

  • Tong XK, Nicolakakis N, Kocharyan A, Hamel E (2005) Vascular remodeling versus amyloid β-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J Neurosci 25(48):11165–11174

    Article  CAS  PubMed  Google Scholar 

  • Tong XK, Nicolakakis N, Fernandes P, Ongali B, Brouillette J, Quirion R et al (2009) Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol Dis 35(3):406–414

    Article  CAS  PubMed  Google Scholar 

  • Tong XK, Lecrux C, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32(14):4705–4715

    Article  CAS  PubMed  Google Scholar 

  • Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F et al (2009) Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension 54(4):782–787

    Article  CAS  PubMed  Google Scholar 

  • Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van den Haute C et al (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157(4):1283–1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderheyden PML (2009) From angiotensin IV binding site to AT4 receptor. Mol Cell Endocrinol 302(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Villapol S, Saavedra JM (2015) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28(3):289–299

    Article  PubMed  Google Scholar 

  • Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X et al (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 117(11):3393–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Chen T, Li G, Zhou L, Sha S, Chen L (2015) Simvastatin prevents beta-amyloid25-35-impaired neurogenesis in hippocampal dentate gyrus through alpha7nAChR-dependent cascading PI3 K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 97:122–132

    Article  CAS  PubMed  Google Scholar 

  • Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22(9):1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Wenzel P, Schulz E, Munzel T (2009) Protein kinase C-inhibiting properties of the losartan metabolite EXP3179 make the difference. Hypertension 54(4):707–709

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann M, Kiliaan AJ, Claassen JA (2013) Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 33(11):1696–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski T, Goni F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85(6):1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW (2008) The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst 9(4):226–237

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223(2):326–333

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 465(1):133–151

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Kawas LH, Harding JW (2015) The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol 125:26–46

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B et al (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3 K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25(2):130–139

    Article  PubMed  Google Scholar 

  • Wu H, Mahmood A, Qu C, Xiong Y, Chopp M (2012) Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Res 1486:121–130

    Article  CAS  PubMed  Google Scholar 

  • Yezhuvath US, Uh J, Cheng Y, Martin-Cook K, Weiner M, Diaz-Arrastia R et al (2012) Forebrain-dominant deficit in cerebrovascular reactivity in Alzheimer’s disease. Neurobiol Aging 33(1):75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerbi V, Jansen D, Dederen PJ, Veltien A, Hamans B, Liu Y et al (2013) Microvascular cerebral blood volume changes in aging APP(swe)/PS1(dE9) AD mouse model: a voxel-wise approach. Brain Struct Funct 218(5):1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Papadopoulos P, Hamel E (2013) Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer’s disease. Br J Pharmacol 170(3):661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV, Deane R, Sallstrom J, Chow N, Miano JM (2005) Neurovascular pathways and Alzheimer amyloid beta-peptide. Brain Pathol 15(1):78–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Hamel.

Acknowledgements

Acknowledgements

The work reported in this review was supported by Grants (to E. H.) from the Canadian Institutes of Health Research (CIHR, MOP-84275 and MOP-126001), la Fondation des maladies du Coeur du Québec, and a Research on Aging FRQS-NSFC collaboration Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamel, E., Royea, J., Ongali, B. et al. Neurovascular and Cognitive failure in Alzheimer’s Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 36, 219–232 (2016). https://doi.org/10.1007/s10571-015-0285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0285-4

Keywords

Navigation