Skip to main content
Log in

mRNA Expression Levels of PGC-1α in a Transgenic and a Toxin Model of Huntington’s Disease

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1 alpha (PGC-1α) is involved in the regulation of mitochondrial biogenesis, respiration, and adaptive thermogenesis. The full-length PGC-1α (FL-PGC-1α) comprises multiple functional domains interacting with several transcriptional regulatory factors such as nuclear respiratory factors, estrogen-related receptors, and PPARs; however, a number of PGC-1α splice variants have also been reported recently. In this study, we examined the expression levels of FL-PGC-1α and N-truncated PGC-1α (NT-PGC-1α), a shorter but functionally active splice variant of PGC-1α protein, in N171-82Q transgenic and 3-nitropropionic acid-induced murine model of Huntington’s disease (HD). The expression levels were determined by RT-PCR in three brain areas (striatum, cortex, and cerebellum) in three age groups (8, 12, and 16 weeks). Besides recapitulating prior findings that NT-PGC-1α is preferentially increased in 16 weeks of age in transgenic HD animals, we detected age-dependent alterations in both models, including a cerebellum-predominant upregulation of both PGC-1α variants in transgenic mice, and a striatum-predominant upregulation of both PGC-1α variants after acute 3-nitropropionic acid intoxication. The possible relevance of this expression pattern is discussed. Based on our results, we assume that increased expression of PGC-1α may serve as a compensatory mechanism in response to mitochondrial damage in transgenic and toxin models of HD, which may be of therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aleshin S, Reiser G (2013) Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol Chem 394:1553–1570

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  PubMed  Google Scholar 

  • Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540

    Article  CAS  PubMed  Google Scholar 

  • Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF (2009) Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 18:3048–3065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF (2010) Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington’s disease following chronic energy deprivation. Hum Mol Genet 19:3190–3205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP (2011) Localization of sequence variations in PGC-1alpha influence their modifying effect in Huntington disease. Mol Neurodegener 6:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  • Damiano M, Diguet E, Malgorn C, D’Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D, Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Deglon N, Beal MF, Brouillet E (2013) A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22:3869–3882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eschbach J, Schwalenstocker B, Soyal SM, Bayer H, Wiesner D, Akimoto C, Nilsson AC, Birve A, Meyer T, Dupuis L, Danzer KM, Andersen PM, Witting A, Ludolph AC, Patsch W, Weydt P (2013) PGC-1alpha is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol Genet 22:3477–3484

    Article  CAS  PubMed  Google Scholar 

  • Felder TK, Soyal SM, Oberkofler H, Hahne P, Auer S, Weiss R, Gadermaier G, Miller K, Krempler F, Esterbauer H, Patsch W (2011) Characterization of novel peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) isoform in human liver. J Biol Chem 286:42923–42936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarabek BR, Yasuda RP, Wolfe BB (2004) Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain 127:505–516

    Article  PubMed  Google Scholar 

  • Johri A, Starkov AA, Chandra A, Hennessey T, Sharma A, Orobello S, Squitieri F, Yang L, Beal MF (2011) Truncated peroxisome proliferator-activated receptor-gamma coactivator 1alpha splice variant is severely altered in Huntington’s disease. Neurodegener Dis 8:496–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johri A, Chandra A, Beal MF (2013) PGC-1alpha, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med 62:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim GW, Chan PH (2001) Oxidative stress and neuronal DNA fragmentation mediate age-dependent vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum. Neurobiol Dis 8:114–126

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19:3919–3935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  • Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009) Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16:899–909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Betuing S, Pages C, Cambon K, Auregan G, Deglon N, Roze E, Caboche J (2011) Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington’s disease: role on chromatin remodeling at the PGC-1-alpha promoter. Hum Mol Genet 20:2422–2434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGill JK, Beal MF (2006) PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell 127:465–468

    Article  CAS  PubMed  Google Scholar 

  • Nishino H, Nakajima K, Kumazaki M, Fukuda A, Muramatsu K, Deshpande SB, Inubushi T, Morikawa S, Borlongan CV, Sanberg PR (1998) Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neurosci Res 30:303–312

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  • Ramos EM, Latourelle JC, Lee JH, Gillis T, Mysore JS, Squitieri F, Di Pardo A, Di Donato S, Hayden MR, Morrison PJ, Nance M, Ross CA, Margolis RL, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Marder K, Gusella JF, Lee JM, Alonso I, Sequeiros J, Myers RH, Macdonald ME (2012) Population stratification may bias analysis of PGC-1alpha as a modifier of age at Huntington disease motor onset. Hum Genet 131:1833–1840

    Article  PubMed Central  PubMed  Google Scholar 

  • Rona-Voros K, Weydt P (2010) The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr Drug Targets 11:1262–1269

    Article  PubMed  Google Scholar 

  • Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  CAS  PubMed  Google Scholar 

  • Soyal SM, Felder TK, Auer S, Hahne P, Oberkofler H, Witting A, Paulmichl M, Landwehrmeyer GB, Weydt P, Patsch W (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21:3461–3473

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG (2013) Neuropathology of partial PGC-1alpha deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases. Neurodegener Dis 12:177–188

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L (2009) PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Tunez I, Collado JA, Medina FJ, Pena J, Del CMM, Jimena I, Franco F, Rueda I, Feijoo M, Muntane J, Montilla P (2006) 17 beta-Estradiol may affect vulnerability of striatum in a 3-nitropropionic acid-induced experimental model of Huntington’s disease in ovariectomized rats. Neurochem Int 48:367–373

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100

    Article  PubMed  Google Scholar 

  • Wenz T (2013) Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion 13:134–142

    Article  CAS  PubMed  Google Scholar 

  • Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, Schwartz MW, La Spada AR (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 4:349–362

    Article  CAS  PubMed  Google Scholar 

  • Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W (2009) The gene coding for PGC-1alpha modifies age at onset in Huntington’s Disease. Mol Neurodegener 4:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Weydt P, Soyal SM, Landwehrmeyer GB, Patsch W (2014) A single nucleotide polymorphism in the coding region of PGC-1alpha is a male-specific modifier of Huntington disease age-at-onset in a large European cohort. BMC Neurol 14:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem 284:32813–32826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0052, MTA-SZTE Neuroscience Research Group and Hungarian Brain Research Program—Grant No. KTIA_NAP_13-A_III/9. Furthermore, this research was realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 and TÁMOP 4.2.4. A/1-11-1-2012-0001 National Excellence Programs—Elaborating and operating an inland student and researcher personal support system. The projects were subsidized by the European Union and co-financed by the European Social Fund.

Conflict of interest

The authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Klivényi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Török, R., Kónya, J.A., Zádori, D. et al. mRNA Expression Levels of PGC-1α in a Transgenic and a Toxin Model of Huntington’s Disease. Cell Mol Neurobiol 35, 293–301 (2015). https://doi.org/10.1007/s10571-014-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0124-z

Keywords

Navigation