Skip to main content
Log in

Mangiferin Regulates Interleukin-6 and Cystathionine-b-Synthase in Lipopolysaccharide-Induced Brain Injury

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mangiferin has been extensively applied in different fields due to its anti-inflammatory properties. However, the precise mechanism used by mangiferin on lipopolysaccharide (LPS)-induced inflammation has not been elucidated. Here, we discuss the potential mechanism of mangiferin during a LPS-induced brain injury. Brain injury was induced in ICR mice via intraperitoneal LPS injection (5 mg/kg). Open- and closed-field tests were used to detect the behaviors of mice, while immunoblotting was performed to measure the expression of interleukin-6 (IL-6) and cystathionine-b-synthase (CBS) in the hippocampus after mangiferin was orally administered (p.o.). Mangiferin relieved LPS-induced sickness 6 and 24 h after LPS injection; in addition, this compound suppressed LPS-induced IL-6 production after 24 h of LPS induction as well as the downregulation of LPS-induced CBS expression after 6 and 24 h of LPS treatment in the hippocampus. Therefore, mangiferin attenuated sickness behavior by regulating the expression of IL-6 and CBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amazzal L, Lapotre A, Quignon F et al (2007) Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells. Neurosci Lett 418:159–164

    Article  CAS  PubMed  Google Scholar 

  • Bhatia HS, Candelario-Jalil E, de Oliveira AC et al (2008) Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys 477:253–258

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Jalabi W, Shpargel KB et al (2012) Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci 32:11706–11715

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Joe EH, Kim SU et al (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci 23:5877–5886

    CAS  PubMed  Google Scholar 

  • Cohen N, Stolarsky-Bennun M, Amir-Kroll H et al (2008) Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells: TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive. J Immunol 180:2409–2418

    Article  CAS  PubMed  Google Scholar 

  • Frenois F, Moreau M, O’Connor J et al (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong X, Zhang L, Jiang R et al (2013) Anti-inflammatory effects of mangiferin on sepsis-induced lung injury in mice via up-regulation of heme oxygenase-1. J Nutr Biochem 24:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Leal-Campanario R, Campos-Esparza MR et al (2006) Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 23:374–386

    Article  CAS  PubMed  Google Scholar 

  • Hauss-Wegrzyniak B, Lukovic L, Bigaud M et al (1998) Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res 794:211–224

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Lee B, Han SJ et al (2009) Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biol Pharm Bull 32:242–246

    Article  CAS  PubMed  Google Scholar 

  • Kentner AC, Takeuchi A, James JS et al (2008) The effects of rewarding ventral tegmental area stimulation and environmental enrichment on lipopolysaccharide-induced sickness behavior and cytokine expression in female rats. Brain Res 1217:50–61

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkoski M, Soriano RN, Araujo RM et al (2013) Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Exp Neurol 240:88–95

    Article  CAS  PubMed  Google Scholar 

  • Leiro J, Arranz JA, Yanez M et al (2004) Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin. Int Immunopharmacol 4:763–778

    Article  CAS  PubMed  Google Scholar 

  • Li L, Bhatia M, Zhu YZ, Zhu YC et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198

    CAS  PubMed  Google Scholar 

  • Li T, Zhao B, Wang C et al (2008) Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp Biol Med (Maywood) 233:1081–1087

    Article  CAS  Google Scholar 

  • Maeda S, Nakatsuka I, Hayashi Y et al (2008) Heme oxygenase-1 induction in the brain during lipopolysaccharide-induced acute inflammation. Neuropsychiatr Dis Treat 4:663–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marquez L, Garcia-Bueno B, Madrigal JL et al (2012) Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 51:729–739

    Article  CAS  PubMed  Google Scholar 

  • Matsumura K, Kaihatsu S, Imai T et al (2000) Cyclooxygenase in the vagal afferents. Is it involved in the brain prostaglandin response evoked by lipopolysaccharide? Auton Neurosci 85:88–92

    Article  CAS  PubMed  Google Scholar 

  • Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Pardo Andreu GL, Maurmann N, Reolon GK et al (2010) Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. Eur J Pharmacol 635:124–128

    Article  CAS  PubMed  Google Scholar 

  • Pinto MM, Sousa ME, Nascimento MS (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538

    Article  CAS  PubMed  Google Scholar 

  • Pollmacher T, Haack M, Schuld A et al (2002) Low levels of circulating inflammatory cytokines-do they affect human brain functions? Brain Behav Immun 16:525–532

    Article  CAS  PubMed  Google Scholar 

  • Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17:13–19

    Article  CAS  PubMed  Google Scholar 

  • Shaw KN, Commins S, O’Mara SM (2001) Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 124:47–54

    Article  CAS  PubMed  Google Scholar 

  • Sparkman NL, Kohman RA, Scott VJ et al (2005) Bacterial endotoxin-induced behavioral alterations in two variations of the Morris water maze. Physiol Behav 86:244–251

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Lan A, Mo L et al (2012) Hydrogen sulfide protects PC12 cells against reactive oxygen species and extracellular signal-regulated kinase 1/2-mediated downregulation of glutamate transporter-1 expression induced by chemical hypoxia. Int J Mol Med 30:1126–1132

    CAS  PubMed  Google Scholar 

  • Yamaguchi S (2004) Preventive effects of anti-inflammatory drugs (non steroidal anti-inflammatory drugs) on Alzheimer disease. Nihon Rinsho 62(Suppl):479–483

    PubMed  Google Scholar 

  • Yan J, Teng F, Chen W et al (2012) Cystathionine beta-synthase-derived hydrogen sulfide regulates lipopolysaccharide-induced apoptosis of the BRL rat hepatic cell line in vitro. Exp Ther Med 4:832–838

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31100762, 81371300), the Education Departmental Natural Science Research Funds of Jiangsu Provincial Higher School of China (11KJB310013, 13KJB310021), the Key Laboratory of Brain Disease Bioinformation of Jiangsu Province (Jsbl1102), the Foundation of President of Xuzhou Medical College (2012KJZ06, 2011KJ11), and the Qing Lan Project of Jiangsu Province.

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hai Liu or Yuan-Jian Song.

Additional information

Yan-Yan Fu, Fang Zhang, and Lei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YY., Zhang, F., Zhang, L. et al. Mangiferin Regulates Interleukin-6 and Cystathionine-b-Synthase in Lipopolysaccharide-Induced Brain Injury. Cell Mol Neurobiol 34, 651–657 (2014). https://doi.org/10.1007/s10571-014-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0039-8

Keywords

Navigation