Skip to main content

Advertisement

Log in

Potential Contribution of Dopaminergic Gene Variants in ADHD Core Traits and Co-Morbidity: A Study on Eastern Indian Probands

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner’s parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case–control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e−007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 ‘9R’ allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AL-Eitan LN, Jaradat SA, Hulse GK, Tay GK (2012) Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent. BMC Res Notes 5:497

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. APA, Washington, DC

  • Arinami T, Gao M, Hamaguchi H, Toru M (1997) A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with Schizophrenia. Hum Mol Genet 6:577–582

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 8:7–12

    Google Scholar 

  • Arranz MJ, de Leon J (2007) Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 12:707–747

    Article  CAS  PubMed  Google Scholar 

  • Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 65:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Asherson P, Brookes K, Franke B et al (2007) Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 164:674–677

    Article  PubMed  Google Scholar 

  • Banaschewski T, Becker K, Scherag S, Franke B, Coghill D (2010) Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry 19:237–257

    Article  PubMed Central  PubMed  Google Scholar 

  • Banerjee TD, Middleton F, Faraone SV (2007) Environmental risk factors for attention-deficit hyperactivity disorder. Foundation Acta Pædiatrica/Acta Pædiatr 96:1269–1274

    Article  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bedard AC, Schulz KP, Cook EH Jr et al (2009) Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. Neuroimage 53:935–942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bellgrove MA, Hawi Z, Kirley A, Gill M, Robertson IH (2005a) Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia 43:1847–1857

    Article  PubMed  Google Scholar 

  • Bellgrove MA, Hawi Z, Lowe N, Kirley A, Robertson IH, Gill M (2005b) DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and -521 SNP. Am J Med Genet B (Neuropsychiatr Genet) 136(B):81–86

    Google Scholar 

  • Bergen AW, Yeager M, Welch RA et al (2005) Association of Multiple DRD2 Polymorphisms with Anorexia Nervosa. Neuropsychopharmacology 30:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Blasi G, Latorre V et al (2006) Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci 26:3918–3922

    Article  CAS  PubMed  Google Scholar 

  • Bharat Raj J (1971) AIISH norms on SFB with Indian children. J AIISH 2:34–39

    Google Scholar 

  • Bidwell LC, Willcutt EG, McQueen MB et al (2011) A family based association study of DRD4, DAT1, and 5HTT and continuous traits of Attention-Deficit Hyperactivity Disorder. Behav Genet 41:165–174

    Article  PubMed Central  PubMed  Google Scholar 

  • Biederman J, Faraone SV (2005) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Google Scholar 

  • Brookes KJ, Mill J, Guindalini C et al (2006) A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch Gen Psychiatry 63:74–81

    Article  CAS  PubMed  Google Scholar 

  • Brown AB, Biederman J, Valera E et al (2011) Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Res 193:7–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldú X, Vendrell P, Bartrés-Faz D et al (2007) Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects. Neuroimage 37:1437–1444

    Article  PubMed  Google Scholar 

  • Colzato LS, Van den Wildenberg WPM, van der Does AJW, Hommel B (2010) Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience 170:782–788

    Article  CAS  PubMed  Google Scholar 

  • Comings DE, Gade-Andavolu R, Gonzalez N et al (2000) Comparison of the role of dopamine, serotonin, and noradrenaline genes in ADHD, ODD and conduct disorder: multivariate regression analysis of 20 genes. Clin Genet 57:178–196

    Article  CAS  PubMed  Google Scholar 

  • Congdon E, Lesch KP, Canli T (2008) Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: implications for impulsivity. Am J Med Genet (Neuropsychiatr Genet) 147(B):27–32

    Google Scholar 

  • Congdon E, Constable RT, Lesch KP, Canli T (2009) Influence of SLC6A3 and COMT variation on neural activation during response inhibition. Biol Psychol 81:144–152

    Article  PubMed Central  PubMed  Google Scholar 

  • Conners CK, Parker JDA, Sitarenios G, Epstein JN (1998) The Revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26:257–268

    Article  CAS  PubMed  Google Scholar 

  • Cornish KM, Manly T, Savage R et al (2005) Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Mol Psychiatry 10:686–698

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch of Neurol 50:873–880

    Article  CAS  Google Scholar 

  • Cummings JL, Miller BL (2007) Conceptual and clinical aspects of the frontal lobes. In: Miller BL, Cummings JL (eds) The human frontal lobes: functions and disorders, 2nd edn. Guilford Press, New York, pp 12–21

    Google Scholar 

  • Cummins TDR, Hawi Z, Hocking J et al (2012) Dopamine transporter genotype predicts behavioural and neural measures of response inhibition. Mol Psychiatry 17:1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Das Bhowmik A, Sarkar K, Ghosh P et al (2013) Significance of dopaminergic gene variants in the male biasness of Attention Deficit Hyperactivity Disorder. J Atten Disord. doi:10.1177/1087054713494004

    PubMed  Google Scholar 

  • Das M, Das Bhowmik A, Bhaduri N et al (2011) Role of gene–gene/gene–environment interaction in the etiology of eastern Indian ADHD probands. Prog Neuro-Psychopharmacol Biol Psychiatry 35:577–587

    Article  CAS  Google Scholar 

  • De Young CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR (2010) Testing predictions from personality neuroscience. Psychol Sci 21:820–828

    Article  Google Scholar 

  • Diamond A (2007) Consequences of variations in genes that affect dopamine in prefrontal cortex. Cereb Cortex 17(Suppl 1):i161–i170

    Article  PubMed Central  PubMed  Google Scholar 

  • DiMaio S, Grizenko N, Joober R (2003) Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci 28:27–38

    PubMed Central  PubMed  Google Scholar 

  • DiMartino A, Scheres A, Margulies DS et al (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747

    Article  CAS  Google Scholar 

  • Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25:115–221

    Article  PubMed  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Filbey FM, Claus ED, Morgan M, Forester GR, Hutchinson K (2012) Dopaminergic genes modulate response inhibition in alcohol abusing adults. Addict Biol 17:1046–1056

    Article  CAS  PubMed  Google Scholar 

  • Forbes EE, Brown SM, Kimak M, Ferrell RE, Manuck SB, Hariri AR (2009) Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 14:60–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI (2002) Assessing the molecular genetics of attention networks. BMC Neurosci 3:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Franke B, Vasquez AA, Johansson S et al (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 35:656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U (2012) Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry 169:264–272

    PubMed  Google Scholar 

  • Gabriela ML, John DG, Magdalena BV et al (2009) Genetic interaction analysis for DRD4 and DAT1 genes in a group of Mexican ADHD patients. Neurosci Lett 451:257–260

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Sarkar K, Bhaduri N, Ray A, Sarkar K, Sinha S, Mukhopadhyay K (2013) Catecholaminergic gene variants: contribution in ADHD and associated co-morbid attributes in the eastern Indian probands. Biomed Res Intern ID 918410, 12 pp. doi:10.1155/2013/918410

  • Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallagar DW (1990) Overlap of dopaminergic, adrenergic, and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosc 10:2125–2138

    CAS  Google Scholar 

  • Gornick MC, Addington A, Shaw P et al (2007) Association of the Dopamine Receptor D4 (DRD4) Gene 7-Repeat allele with children with Attention-Deficit/Hyperactivity Disorder (ADHD): an update. Am J Med Genet (Neuropsychiatr Genet) 144(B):379–382

    Google Scholar 

  • Guan L, Wang B, Chen Y, Yang L, Li J, Qian Q, Faraone SV, Wang Y (2009) A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14:546–554

    Article  CAS  PubMed  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics 19:376–382

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  CAS  PubMed  Google Scholar 

  • Hill M, Anney RJ, Gill M, Hawi Z (2010) Functional analysis of intron 8 and 30 UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. Pharmacogenomics J 10:442–447

    Article  CAS  PubMed  Google Scholar 

  • Holmboe K, Nemoda Z, Fearon RMP, Csibra G, Sasvari-Szekely M, Johnson MH (2010) Polymorphisms in dopamine system genes are associated with individual differences in attention in infancy. Dev Psychol 46:404–416

    Article  PubMed Central  PubMed  Google Scholar 

  • Holmes J, Payton A, Barrett J et al (2002) Association of DRD4 in children with ADHD and comorbid conduct problems. Am J Med Genet 114:150–153

    Article  PubMed  Google Scholar 

  • Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD (2009) Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American Sample. Neuropsychopharmacology 34:319–330

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Okubo Y, Halldin C, Farde L (1999) Mapping of central D2 dopamine receptors in man using (11C) raclopride: PET with anatomic standardization technique. NeuroImage 9:235–242

    Article  CAS  PubMed  Google Scholar 

  • Johnsson KA, Kelly SP, Robertson IH et al (2008) Absence of the 7-repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. Am J Med Genet (Neuropsychiatr Genet) 147(B):927–937

    Google Scholar 

  • Kehagia AA, Barket RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurobiol 9:1200–1213

    Article  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ et al (2006) Transient and selective overexpression of Dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615

    Article  CAS  PubMed  Google Scholar 

  • Kereszturi E, Király O, Csapó Z, Tamok Z, Gadaros J, Sasvári-Székely M, Nemoda Z (2007) Analysis of the dopamine D4 receptor gene variants in attention deficit hyperactivity disorder. Neuropsychopharmacol Hung 9:11–18

    PubMed  Google Scholar 

  • Kieling C, Roman T, Doyle AE, Hutz MH, Rohde LA (2006) Association between DRD4 gene and performance of children with ADHD in a test of sustained attention. Biol Psychiatry 60:1163–1165

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) Methylphenidate-induced dendritic spine formation and FosB expression in nucleus accumbens. Proc Natl Acad Sci USA 106:2915–2920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer UM, Rojo N, Schule R et al (2009) ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample. BMC Neurosci 10:150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kraschewski A, Reese J, Anghelescu I et al (2009) Association of the dopamine D2 receptor gene with alcohol dependence: haplotypes and subgroups of alcoholics as key factors for understanding receptor function. Pharmacogenet Genomics 19:513–527

    Article  CAS  PubMed  Google Scholar 

  • Langley K, Marshall L, van den Bree M, Thomas H, Owen M, O’Donovan M, Thapar A (2004) Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 161:133–138

    Article  PubMed  Google Scholar 

  • Lasky-Su J, Neale BM, Franke B et al (2010) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet (Neuropsychiatric Genet) 147:1345–1354

    Google Scholar 

  • Laucht M, Becker K, Schmidt MH (2006) Visual exploratory behaviour in infancy and novelty seeking in adolescence: two developmentally specific phenotypes of DRD4? J Child Psychol Psychiatry 47:1143–1151

    Article  PubMed  Google Scholar 

  • Lazar JW, Frank Y (1998) Frontal systems dysfunction in children with attention-deficit hyperactivity disorder and learning disabilities. J Neuropsychiatr and Clinical Neurosc 10:160–167

    CAS  Google Scholar 

  • Lenth RV (2007) Statistical power calculations. J Animal Sci 85:E24–E29

    Article  CAS  Google Scholar 

  • Li Y, Baker-Ericzen M, Ji N et al (2013) Do SNPs of DRD4 gene predict adult persistence of ADHD in a Chinese sample? Psychiatry Res 205:143–150

    Article  CAS  PubMed  Google Scholar 

  • Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML (2003) Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child Adolesc Psychiatry 42:986–993

    Article  PubMed  Google Scholar 

  • Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP (2013) Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci 16:357–364

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Arnsten AFT, Castellanos FX (2002) Neurobiology of attention regulation and its disorders. In: Martin A, Scahill L, Charney D, Leckman J (eds) Textbook of child and adolescent psychopharmacology. Oxford University Press, New York, pp 99–109

    Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1998) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  Google Scholar 

  • Moore JH, White BC (2007) Tuning relief for genome-wide genetic analysis. Lect Notes Comput Sci 4447:166–175

    Article  Google Scholar 

  • Moore JH, Gilbert JC, Tsai CT, Chiang F, Holden T, Barney N, White B (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261

    Article  PubMed  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  CAS  PubMed  Google Scholar 

  • Nyman ES, Ogdie MN, Loukola A et al (2007) ADHD candidate gene study in a population-based birth cohort: association with DBH and DRD2. J Am Acad Child Adolesc Psychiatry 46:1614–1621

    Article  PubMed  Google Scholar 

  • Parsons MJ, Mata I, Beperet M et al (2007) A dopamine D2 receptor gene-related polymorphism is associated with schizophrenia in a Spanish population isolate. Psychiatric Genet 17:159–163

    Article  Google Scholar 

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Article  PubMed  Google Scholar 

  • Price JL (1999) Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci 877:383–396

    Article  CAS  PubMed  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  CAS  PubMed  Google Scholar 

  • Schoots O, Van Tol HH (2003) The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J 3:343–348

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Gornick M, Lerch J et al (2007) Polymorphisms of the dopamine D4 receptor, clinical outcome and cortical structure in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:921–931

    Article  PubMed  Google Scholar 

  • Sheese BE, Voelker PM, Rothbart MK, Posner MI (2007) Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Dev Psychopathol 19:1039–1046

    Article  PubMed  Google Scholar 

  • Szekely A, Balota DA, Duchek JM, Nemoda Z, Vereczkei A, Sasvari-Szekely M (2011) Genetic factors of reaction time performance: DRD4 7-repeat allele associated with slower responses. Genes Brain Behav 10:129–136

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger JD, Ott J (1992) A haplotype-based “haplotype relative risk” approach to detecting allelic association. Hum Hered 42:337–346

    Article  CAS  PubMed  Google Scholar 

  • Thapar A, Holmes J, Poulton K, Harrington R (1999) Genetic basis of attention deficit and hyperactivity. Br J Psychiatry 174:105–111

    Article  CAS  PubMed  Google Scholar 

  • van de Giessen EM, de Win MML, Tanck MWT, van den Brink W, Baas F, Booij J (2008) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 50:45–52

    Article  PubMed  CAS  Google Scholar 

  • van Dyck CH, Malison RT, Jacobsen LK et al (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  • Voytek B, Knight RT (2010) Prefrontal cortex and basal ganglia contributions to working memory. Proc Natl Acad Sci USA 107:18167–18172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wechsler D (1991) Wechsler intelligence scale for children, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wilens TE (2008) Pharmacotherapy of ADHD in adults. CNS Spectr 13:11–13

    PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature 376:572–575

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning, and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xiao H, Sun H, Zou L, Zhu L-Q (2012) Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol 45:605–620

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Jang WS, Hong SD et al (2008) A case-control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP. Prog Neuropsychopharmacol Biol Psychiatry 32:243–248

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Steiner H (2007) Methylphenidate and cocaine: the same effects on gene regulation? Trends Pharmacol Sci 28:588–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ye Y, Wang X, Gelernter J, Ma JZ, Li MD (2006) DOPA decarboxylase gene is associated with nicotine dependence. Pharmacogenomics 7:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-P, Lencz T, Malhotra AK (2010) D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry 167:763–772

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou K, Chen W, Buitelaar J et al (2008) Genetic heterogeneity in ADHD: DAT1 gene only affects probands without CD. Am J Med Genet (Neuropsychiatr Genet) 147(B):1481–1487

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the volunteers for participation in the study. Part of this work was sponsored by the Department of Science & Technology, Govt. of India (SR/CSI/17/2009); SM is a DST project fellow. PG (Indian Council of Medical Research, India) and KS (Council of Scientific and Industrial Research, India) received fellowship support from Govt. agencies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Mukhopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (DOCX 28 kb)

10571_2014_38_MOESM2_ESM.docx

Fig. S1. Correlation between genotype and ADHD severity using ADHD index score. DRD2 rs1799732- 1¬- CC, 2-CDel, 3- DelDel; DRD2 rs6278- 4-GG, 5-GT, 6-TT; DRD4 Exon 3 VNTR- 7-≤4R≤4R, 8-≤4R >4R, 9->4R>4R; DRD4 rs916455- 10- CC, 11- CT, 12- TT; SLC6A3 rs28363170- 13-10R10R, 14-10R9R, 15-9R9R; SLC6A3 rs3836790- 16-6R6R, 17-6R5R, 18-5R5R. (DOCX 26 kb)

10571_2014_38_MOESM3_ESM.docx

Fig. S2. Frequency of genotypes in ADHD cases with co-morbid features. DRD2 rs1799732- 1¬- CC, 2-CDel, 3- DelDel; DRD2 rs6278- 4-GG, 5-GT, 6-TT; DRD4 Exon 3 VNTR- 7-≤4R≤4R, 8-≤4R >4R, 9->4R>4R; DRD4 rs916455- 10- CC, 11- CT, 12- TT; SLC6A3 rs28363170- 13-10R10R, 14-10R9R, 15-9R9R; SLC6A3 rs3836790- 16-6R6R, 17-6R5R, 18-5R5R. (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitra, S., Sarkar, K., Ghosh, P. et al. Potential Contribution of Dopaminergic Gene Variants in ADHD Core Traits and Co-Morbidity: A Study on Eastern Indian Probands. Cell Mol Neurobiol 34, 549–564 (2014). https://doi.org/10.1007/s10571-014-0038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0038-9

Keywords

Navigation