Skip to main content

Advertisement

Log in

Dynamic Change of Prohibitin2 Expression in Rat Sciatic Nerve After Crush

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PHB2:

Prohibitin2

GAP43:

Growth-associated protein 43

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PBS:

Phosphate-buffered saline

PNS:

Peripheral nervous system

PCNA:

Proliferating cell nuclear antigen

SCs:

Schwann cells

SNC:

Sciatic nerve crush

References

  • Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18:276–283

    Article  PubMed  CAS  Google Scholar 

  • Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metabol 20:394–401

    Article  CAS  Google Scholar 

  • Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LG, De Koster CG, Grivell LA, Van Der Spek H, Muijsers AO (2002) A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci: A Publ Protein Soc 11:2471–2478

    Article  CAS  Google Scholar 

  • Causey G, Hoffman H (1956) The relation between the Schwann cell and the axon in peripheral nerves. J Anat 90:1–4

    PubMed  CAS  Google Scholar 

  • Cheng C, Zochodne DW (2002) In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience 115:321–329

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Lee SJ, Hong S, Kim IH, Kang S (2008) Prohibitin interacts with RNF2 and regulates E2F1 function via dual pathways. Oncogene 27:1716–1725

    Article  PubMed  CAS  Google Scholar 

  • Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7:607–610

    Article  PubMed  CAS  Google Scholar 

  • Dell’Orco RT, McClung JK, Jupe ER, Liu XT (1996) Prohibitin and the senescent phenotype. Exp Gerontol 31:245–252

    Article  PubMed  Google Scholar 

  • Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, Brook GA (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92:245–276

    Article  PubMed  Google Scholar 

  • Fenrich K, Gordon T (2004) Canadian Association of Neuroscience review: axonal regeneration in the peripheral and central nervous systems—current issues and advances. Can J Neurol sci Le J canadien des sciences neurologiques 31:142–156

    Google Scholar 

  • Franzoni A, Dima M, D’Agostino M, Puppin C, Fabbro D, Loreto CD, Pandolfi M, Puxeddu E, Moretti S, Celano M, Bruno R, Filetti S, Russo D, Damante G (2009) Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF(V600E) mutation. Thyroid Off J Am Thyroid Assoc 19:247–255

    Article  CAS  Google Scholar 

  • Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861

    Article  PubMed  CAS  Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflamm 8:110

    Article  Google Scholar 

  • Griffin JW, Pan B, Polley MA, Hoffman PN, Farah MH (2010) Measuring nerve regeneration in the mouse. Exp Neurol 223:60–71

    Article  PubMed  CAS  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    PubMed  CAS  Google Scholar 

  • Ikonen E, Fiedler K, Parton RG, Simons K (1995) Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett 358:273–277

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Yi XF, Zhang ZB, Zhuang ZP, Li J, Chambers SK, Kong BH, Zheng W (2011) Prohibitin as a novel target protein of luteinizing hormone in ovarian epithelial carcinogenesis. Neoplasma 58:104–109

    Article  PubMed  CAS  Google Scholar 

  • Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell’Orco RT (1996) Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 3′ untranslated region mutations. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 7:871–878

    CAS  Google Scholar 

  • Kakehashi A, Ishii N, Shibata T, Wei M, Okazaki E, Tachibana T, Fukushima S, Wanibuchi H (2011) Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci Off J Soc Toxicol 119:61–72

    Article  CAS  Google Scholar 

  • Koeppen AH (2004) Wallerian degeneration: history and clinical significance. J Neurol Sci 220:115–117

    Article  PubMed  Google Scholar 

  • Li QF, Liang Y, Shi SL, Liu QR, Xu DH, Jing GJ, Wang SY, Kong HY (2011) Localization of prohibitin in the nuclear matrix and alteration of its expression during differentiation of human neuroblastoma SK-N-SH cells induced by retinoic acid. Cell Mol Neurobiol 31:203–211

    Article  PubMed  CAS  Google Scholar 

  • Love FM, Thompson WJ (1998) Schwann cells proliferate at rat neuromuscular junctions during development and regeneration. J Neurosci Off J Soc Neurosci 18:9376–9385

    CAS  Google Scholar 

  • Ma CH, Omura T, Cobos EJ, Latremoliere A, Ghasemlou N, Brenner GJ, van Veen E, Barrett L, Sawada T, Gao F, Coppola G, Gertler F, Costigan M, Geschwind D, Woolf CJ (2011) Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Investig 121:4332–4347

    Article  PubMed  CAS  Google Scholar 

  • McClung JK, King RL, Walker LS, Danner DB, Nuell MJ, Stewart CA, Dell’Orco RT (1992) Expression of prohibitin, an antiproliferative protein. Exp Gerontol 27:413–417

    Article  PubMed  CAS  Google Scholar 

  • McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30:99–124

    Article  PubMed  CAS  Google Scholar 

  • Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LC, Nyomba BL, Murphy LJ (2005) Prohibitin: a potential target for new therapeutics. Trends Mol Med 11:192–197

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LC, Murphy LJ (2006) The prohibitins: emerging roles in diverse functions. J Cell Mol Med 10:353–363

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Ande SR, Nyomba BL (2010) The role of prohibitin in cell signaling. FEBS J 277:3937–3946

    Article  PubMed  CAS  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Ogata T, Yamamoto S, Nakamura K, Tanaka S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33:51–62

    Article  PubMed  CAS  Google Scholar 

  • Radtke C, Vogt PM (2009) Peripheral nerve regeneration: a current perspective. Eplasty 9:e47

    PubMed  Google Scholar 

  • Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomaterials 30:5251–5259

    Article  PubMed  CAS  Google Scholar 

  • Roskams AJ, Friedman V, Wood CM, Walker L, Owens GA, Stewart DA, Altus MS, Danner DB, Liu XT, McClung JK (1993) Cell cycle activity and expression of prohibitin mRNA. J Cell Physiol 157:289–295

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflamm 8:109

    Article  CAS  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84:739–752

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL, Williams AK, Glaser L, Bunge RP (1980) Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 84:753–766

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, Sakamoto T, Takita K, Kasumi F, Miki Y et al (1992) The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. Cancer Res 52:1643–1646

    PubMed  CAS  Google Scholar 

  • Scherer SS (1997) The biology and pathobiology of Schwann cells. Curr Opin Neurol 10:386–397

    Article  PubMed  CAS  Google Scholar 

  • Sievers C, Billig G, Gottschalk K, Rudel T (2010) Prohibitins are required for cancer cell proliferation and adhesion. PLoS ONE 5:e12735

    Article  PubMed  Google Scholar 

  • Siironen J, Collan Y, Roytta M (1994) Axonal reinnervation does not influence Schwann cell proliferation after rat sciatic nerve transection. Brain Res 654:303–311

    Article  PubMed  CAS  Google Scholar 

  • Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Takata H, Matsunaga S, Morimoto A, Ma N, Kurihara D, Ono-Maniwa R, Nakagawa M, Azuma T, Uchiyama S, Fukui K (2007) PHB2 protects sister-chromatid cohesion in mitosis. Curr Biol 17:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Theiss AL, Sitaraman SV (2011) The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta 1813:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Van Aken O, Whelan J, Van Breusegem F (2010) Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci 15:275–282

    Article  PubMed  Google Scholar 

  • Van der Zee CE, Nielander HB, Vos JP, Lopes da Silva S, Verhaagen J, Oestreicher AB, Schrama LH, Schotman P, Gispen WH (1989) Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. J Neurosci Off J Soc Neurosci 9:3505–3512

    Google Scholar 

  • Viader A, Golden JP, Baloh RH, Schmidt RE, Hunter DA, Milbrandt J (2011) Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J Neurosci Off J Soc Neurosci 31:10128–10140

    Article  CAS  Google Scholar 

  • Wang S, Nath N, Adlam M, Chellappan S (1999a) Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 18:3501–3510

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Nath N, Fusaro G, Chellappan S (1999b) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19:7447–7460

    PubMed  CAS  Google Scholar 

  • Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Benowitz LI, Villa-Komaroff L, Neve RL (1990) Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Brain Res Mol Brain Res 7:39–44

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Xue F, Zhao F, Lu H, Zhang H, Jiang B (2008) The immunohistological observation of proliferation rule of Schwann cell after sciatic nerve injury in rats. Artif Cells Blood Substit Immobil Biotechnol 36:150–155

    Article  PubMed  CAS  Google Scholar 

  • Zochodne DW (2012) The challenges and beauty of peripheral nerve regrowth. J Peripher Nerv Syst 17:1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81171140, 30300099, 30770488 and 30870320); Natural Science Foundation of Jiangsu province (Nos. BK2009161, BK2009156, BK2009157); Natural science Foundation of Jiangsu Colleges and Universities Grant (09KJD310005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, L., Huang, Y., Wu, H. et al. Dynamic Change of Prohibitin2 Expression in Rat Sciatic Nerve After Crush. Cell Mol Neurobiol 33, 689–698 (2013). https://doi.org/10.1007/s10571-013-9935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9935-6

Keywords

Navigation