Skip to main content

Advertisement

Log in

Initial Contact of Glioblastoma Cells with Existing Normal Brain Endothelial Cells Strengthen the Barrier Function via Fibroblast Growth Factor 2 Secretion: A New In Vitro Blood–Brain Barrier Model

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood–brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  PubMed  Google Scholar 

  • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA 106:1977–1982

    Article  PubMed  CAS  Google Scholar 

  • Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859

    PubMed  CAS  Google Scholar 

  • Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C (2007) Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J Neurosci 27:3260–3267

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Woodard CA (1995) Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36:124–132

    Article  PubMed  CAS  Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41:691–703

    Article  PubMed  Google Scholar 

  • Dejana E (2004) Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Deli MA (2007) Blood–brain barrier models. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology, neural membranes and transport vol 11. Springer, New York, pp 29–56

  • Deli MA, Szabo C, Dung N, Joo F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutant W (eds) Drug transport across the blood–brain barrier: in vivo and in vitro techniques. Harwood Academic Publishers, Amsterdam, pp 23–28

  • Deli MA, Ábrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  • Dobbie MS, Hurst RD, Klein NJ, Surtees RA (1999) Upregulation of intracellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res 830:330–336

    Article  PubMed  CAS  Google Scholar 

  • Dunn IF, Hesse O, Black P (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50:121–137

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour`s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  PubMed  CAS  Google Scholar 

  • Grabb PA, Gilbert MR (1995) Neoplastic and pharmacological influence on the permeability of an in vitro blood–brain barrier. J Neurosurg 82:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Greenwood J, Pryce G, Devine L, Male DK, dos Santos WL, Calder VL, Adamson P (1996) SV40 large T immortalized cell lines of the rat blood–brain and blood–retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 71:51–63

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla H-J (1998) Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 247:312–315

    Article  PubMed  CAS  Google Scholar 

  • Huang MS, Wang TJ, Liang CL, Huang HM, Yang IC, Yi-Jan H, Hisao M (2002) Establishment of fluorescent lung carcinoma metastasis model and its real-time microscopic detection in SCID mice. Clin Exp Metastasis 19:359–368

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinase and tight junction proteins. J Neuropathol Exp Neurol 67:435–448

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Holm DA, Okollie B, Artemov D (2010) Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro-Oncology 12:71–79

    Article  PubMed  CAS  Google Scholar 

  • Klint P, Kanda S, Kloog Y, Claesson-Welsh L (1999) Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 18:3354–3364

    Article  PubMed  CAS  Google Scholar 

  • Lund-Johansen M, Forsberg K, Bjerkvig R, Laerum OD (1992) Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture. Acta Neuropathol 84:190–197

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  • Nir I, Levanon D, Iosilevsky G (1989) Permeability of blood vessels in experimental gliomas: uptake of 99mTc-glucoheptonate and alteration in blood–brain barrier as determined by cytochemistry and electron microscopy. Neurosurgery 25:523–531

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Takimoto K, Okada M, Nakagawa H (1989) C6 glioma cells produce basic fibroblast growth factor that can stimulate their own proliferation. Biochemistry 106:904–909

    CAS  Google Scholar 

  • Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, Stupp R (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10:3728–3736

    Article  PubMed  CAS  Google Scholar 

  • Paradridge WM (2002) Drug and gene targeting to brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    Article  Google Scholar 

  • Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 93:279–289

    Article  PubMed  Google Scholar 

  • Pitz MW, Desai A, Grossman SA, Blakeley JO (2011) Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol 104:629–638

    Article  PubMed  CAS  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  PubMed  CAS  Google Scholar 

  • Plowman J, Waud WR, Koutsoukos AD, Rubinstein LV, Moore TD, Grever MR (1994) Preclinical antitumor activity of temozolomide in mice: efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 54:3793–3799

    PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural location of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: evidence from mouse mutants. J Neurosci 23:6404–6412

    PubMed  CAS  Google Scholar 

  • Scherer HD (1940) Cerebral astrocytomas and their derivatives. Am J Cancer 1:159–198

    Google Scholar 

  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164

    Article  PubMed  CAS  Google Scholar 

  • Stefaik DF, Rizlkalla LR, Soi A, Goldblatt SA, Rizkalla WM (1991) Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 51:5705–5760

    Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  • Tanghetti E, Ria R, Dell`Era P, Urbinati C, Rusnati M, Ennas MG, Presta M (2002) Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene 21:3889–3897

    Article  PubMed  CAS  Google Scholar 

  • Tovi M, Hartman M, Lilja A, Ericsson A (1994) MR imaging in cerebral gliomas. Tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505

    PubMed  CAS  Google Scholar 

  • Watanabe M, Tanaka R, Taeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    Article  PubMed  CAS  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  • Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, Kretzschimar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315

    Article  PubMed  Google Scholar 

  • Yamamoto M, Mohanam S, Sawaya R (1998) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56:384–392

    Google Scholar 

  • Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood–brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 762:333–345

    Article  PubMed  CAS  Google Scholar 

  • ZagZag D, Goldenberg M, Brem S (1989) Angiogenesis and blood–brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146

    Article  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and neurodegenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Mayumi Sagara of the BBB Laboratory, PharmaCo-Cell Company Ltd., and Mr. Ken Izawa and Mr. Daisuke Watanabe of the Sano Drug Group for their contributions. This study was supported in part by Grant-in-Aid for Scientific Research (#23592094 to K.H. and #23592095 to K.U.) from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

We have nothing to disclose in terms of financial support or relationships that may pose a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyoda, K., Tanaka, K., Nakagawa, S. et al. Initial Contact of Glioblastoma Cells with Existing Normal Brain Endothelial Cells Strengthen the Barrier Function via Fibroblast Growth Factor 2 Secretion: A New In Vitro Blood–Brain Barrier Model. Cell Mol Neurobiol 33, 489–501 (2013). https://doi.org/10.1007/s10571-013-9913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9913-z

Keywords

Navigation