Skip to main content

Advertisement

Log in

A Modified In vitro Method to Obtain Pure Astrocyte Cultures Induced from Mouse Hippocampal Neural Stem Cells Using Clonal Expansion

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to produce astrocyte cultures of high purity from mouse hippocampal neural stem cells and to compare their in vitro properties with those isolated from enriched mixed glial cultures prepared from mouse hippocampus, which are commonly contaminated by microglia. We produced primary cultures of newborn mouse hippocampal neural stem cells, which have the potential to differentiate into astrocytes, neurons, and oligodendrocytes. We produced monoclonal neural stem cell colonies by limiting dilution. We induced astrocyte differentiation by plating the colonies on poly-l-lysine and culturing them in induction medium consisting of minimum essential medium/F12 supplemented with 10% fetal bovine serum and 100 ng/ml ciliary neurotrophic factor. We then further purified the cells by differential adherence and shaking at a constant temperature, followed by a second round of limiting dilution. Immunocytochemistry for glial fibrillary acidic protein showed that our method yielded 99.4 ± 0.5% pure astrocytes, whereas traditionally enriched mixed glial cultures yielded 94.2 ± 2% pure astrocytes. Induced cells resembled primary astrocyte cultures in functional properties such as cell proliferation rates and lack of tumorigenicity and p53, and expression of epidermal growth factor receptor, bystin, and nitric oxygen synthase. Our novel method of culture and purification of neural stem cells can therefore be used routinely for the primary culture of highly purified astrocytes from mouse hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. doi:10.1038/nrn1824

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Perea G (2004) Glial modulation of synaptic transmission in culture. Glia 47(3):241–248. doi:10.1002/glia.20026

    Article  PubMed  Google Scholar 

  • Bramanti V, Tomassoni D, Avitabile M, Amenta F, Avola R (2010) Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci (School Ed) 2:558–570

    Article  Google Scholar 

  • Brunet JF, Grollimund L, Chatton JY, Lengacher S, Magistretti PJ, Villemure JG, Pellerin L (2004) Early acquisition of typical metabolic features upon differentiation of mouse neural stem cells into astrocytes. Glia 46(1):8–17. doi:10.1002/glia.10348

    Article  PubMed  CAS  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Crocker SJ, Frausto RF, Whitton JL, Milner R (2008) A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 56(11):1187–1198. doi:10.1002/glia.20689

    Article  PubMed  Google Scholar 

  • Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16(3):320–344. doi:10.1006/meth.1998.0688

    Article  PubMed  CAS  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271(30):17724–17732

    Article  PubMed  CAS  Google Scholar 

  • Hamby ME, Hewett JA, Hewett SJ (2006a) TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 54(6):566–577. doi:10.1002/glia.20411

    Article  PubMed  Google Scholar 

  • Hamby ME, Uliasz TF, Hewett SJ, Hewett JA (2006b) Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods 150(1):128–137. doi:10.1016/j.jneumeth.2005.06.016

    Article  PubMed  CAS  Google Scholar 

  • Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100(1):307–317. doi:10.1152/japplphysiol.00938.2005

    Article  PubMed  CAS  Google Scholar 

  • Levison SW, Druckman SK, Young GM, Basu A (2003) Neural stem cells in the subventricular zone are a source of astrocytes and oligodendrocytes, but not microglia. Dev Neurosci 25(2–4):184–196. doi:10.1159/000072267

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Rosenberg GA, Liu KJ (2006) AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytes. J Neurosci Res 84(2):360–369. doi:10.1002/jnr.20895

    Article  PubMed  CAS  Google Scholar 

  • Loo DT, Althoen MC, Cotman CW (1995) Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity. J Neurosci Res 42(2):184–191. doi:10.1002/jnr.490420205

    Article  PubMed  CAS  Google Scholar 

  • Mabie PC, Mehler MF, Marmur R, Papavasiliou A, Song Q, Kessler JA (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial–astroglial progenitor cells. J Neurosci 17(11):4112–4120

    PubMed  CAS  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  PubMed  CAS  Google Scholar 

  • Milner R, Campbell IL (2002) Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the alpha6beta1 integrin. J Neurosci 22(5):1562–1572

    PubMed  CAS  Google Scholar 

  • Milner R, Relvas JB, Fawcett J, ffrench-Constant C (2001) Developmental regulation of alphav integrins produces functional changes in astrocyte behavior. Mol Cell Neurosci 18(1):108–118. doi:10.1006/mcne.2001.1003

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32(1):59–72. doi:10.1385/MN:32:1:059

    Article  PubMed  CAS  Google Scholar 

  • Ravin R, Hoeppner DJ, Munno DM, Carmel L, Sullivan J, Levitt DL, Miller JL, Athaide C, Panchision DM, McKay RD (2008) Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3(6):670–680. doi:10.1016/j.stem.2008.09.012

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Roessmann U, Velasco ME, Sindely SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Rawson C, Lindburg K, Barnes D (1990) Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum-free-derived mouse embryo cells. Proc Natl Acad Sci USA 87(21):8378–8382

    Article  PubMed  CAS  Google Scholar 

  • Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44(3):183–189. doi:10.1002/glia.10274

    Article  PubMed  Google Scholar 

  • Sen A, Kallos MS, Behie LA (2002) Passaging protocols for mammalian neural stem cells in suspension bioreactors. Biotechnol Prog 18(2):337–345. doi:10.1021/bp010150t

    Article  PubMed  CAS  Google Scholar 

  • Shin CY, Lee WJ, Choi JW, Choi MS, Ryu JR, Oh SJ, Cheong JH, Choi EY, Ko KH (2007) Down-regulation of matrix metalloproteinase-9 expression by nitric oxide in lipopolysaccharide-stimulated rat primary astrocytes. Nitric Oxide 16(4):425–432. doi:10.1016/j.niox.2007.03.004

    Article  PubMed  CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896. doi:10.1016/j.neuroscience.2004.09.053

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400–407. doi:10.1177/1073858405278321

    Article  PubMed  CAS  Google Scholar 

  • Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P (2004) Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. J Neurosci Res 78(5):625–636. doi:10.1002/jnr.20316

    Article  PubMed  CAS  Google Scholar 

  • Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH (2007) Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 27(3):460–468. doi:10.1038/sj.jcbfm.9600354

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1989) Immunoblotting in the clinical laboratory. J Clin Chem Clin Biochem 27(8):495–501

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Shi, W. & Li, H. A Modified In vitro Method to Obtain Pure Astrocyte Cultures Induced from Mouse Hippocampal Neural Stem Cells Using Clonal Expansion. Cell Mol Neurobiol 32, 373–380 (2012). https://doi.org/10.1007/s10571-011-9765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9765-3

Keywords

Navigation