Skip to main content
Log in

Death Receptor 5 and Neuroproliferation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand or Apo2 ligand is a member of the tumor necrosis factor superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). However, DR5 is also expressed in the developing CNS where it appears to play a role unrelated to apoptosis, and instead may be involved in the regulation of neurogenesis. We report on the distribution of DR5 expression in mouse hippocampus, cerebellum, and rostral migratory stream (RMS) of olfactory bulb from embryonic (E) day 16 (E16) to postnatal (P) day (P180). At E16, DR5-positive cells were distributed widely in embryonic hippocampus with strong immunostaining in the developing dentate gyrus. In newborn hippocampus, DR5-positive cells were predominantly located in proliferative zones, such as dentate gyrus, subventricular zone, and RMS. After postnatal day 7 (P7), the number of DR5-positive cells decreased, and cells with intense fluorescence were primarily restricted to the subgranular layer (SGL), although the granular cell layer showed weak fluorescence. After P30, only few DR5-positive cells were found in SGL, and mature granule cells were negative for DR5 expression. To address whether DR5 expression is a restricted to progenitor cells and newborn neurons, we performed 5-bromo-deoxyuridine labeling. We report that proliferative cells in the SGL selectively express DR5, with lower levels of expression in cells positive for doublecortin, a marker of newborn neurons. In addition, the stem cells in intestine, cerebellum, and RMS were also demonstrated to be DR5-positive. In the meantime, in cerebellum, DR5-positive cells were also positive for glial fibrillary acidic protein, a marker of proliferative Bergmann cells. We conclude that DR5 is selectively expressed by neuroprogenitor cells and newborn neurons, suggesting that the DR5 death receptor is likely to play a key role in neuroproliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulghani J, El-Deiry WS (2010) TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14:1091–1108

    Article  PubMed  CAS  Google Scholar 

  • Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327

    Article  PubMed  CAS  Google Scholar 

  • Alcock J, Scotting P, Sottile V (2007) Bergmann glia as putative stem cells of the mature cerebellum. Med Hypotheses 69:341–345

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Williams JL, Greenwood SL, Baker PN, Aplin JD, Crocker IP (2009) A placental protective role for trophoblast-derived TNF-related apoptosis-inducing ligand (TRAIL). Placenta 30:855–860

    Article  PubMed  CAS  Google Scholar 

  • Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C (2009) TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials 4:34–41

    Article  PubMed  CAS  Google Scholar 

  • Belyanskaya LL, Ziogas A, Hopkins-Donaldson S, Kurtz S, Simon HU, Stahel R, Zangemeister-Wittke U (2008) TRAIL-induced survival and proliferation of SCLC cells is mediated by ERK and dependent on TRAIL-R2/DR5 expression in the absence of caspase-8. Lung Cancer 60:355–365

    Article  PubMed  Google Scholar 

  • Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19:683–697

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Livesey FJ (2011) Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70:719–729

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum DJ, Forero-Torres A, LoBuglio AF (2007) TRAIL-receptor antibodies as a potential cancer treatment. Future Oncol 3:405–409

    Article  PubMed  CAS  Google Scholar 

  • Budd RC (2002) Death receptors couple to both cell proliferation and apoptosis. J Clin Invest 109:437–441

    PubMed  CAS  Google Scholar 

  • Chattergoon MA, Muthumani K, Tamura Y, Ramanathan M, Shames JP, Saulino V, Robinson TM, Montaner LJ, Weiner DB (2008) DR5 activation of caspase-8 induces DC maturation and immune enhancement in vivo. Mol Ther 16:419–426

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7:821–830

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Ma B, Yang S, Xing X, Gu R, Hu Y (2009) DR5 and DcR2 are expressed in human lumbar intervertebral discs. Spine 34:E677–E681

    Article  PubMed  Google Scholar 

  • Clarke RB (2006) Ovarian steroids and the human breast: regulation of stem cells and cell proliferation. Maturitas 54:327–334

    Article  PubMed  CAS  Google Scholar 

  • Falschlehner C, Ganten TM, Koschny R, Schaefer U, Walczak H (2009) TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. Adv Exp Med Biol 647:195–206

    Article  PubMed  CAS  Google Scholar 

  • Harrison DC, Roberts J, Campbell CA, Crook B, Davis R, Deen K, Meakin J, Michalovich D, Price J, Stammers M, Maycox PR (2000) TR3 death receptor expression in the normal and ischaemic brain. Neuroscience 96:147–160

    Article  PubMed  CAS  Google Scholar 

  • Henson ES, Johnston JB, Gibson SB (2008) The role of TRAIL death receptors in the treatment of hematological malignancies. Leuk Lymphoma 49:27–35

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Jin H, Liu Y, Zhou J, Ding J, Cheng KW, Yu Y, Feng Y (2010) FSH inhibits ovarian cancer cell apoptosis by up-regulating survivin and down-regulating PDCD6 and DR5. Endocr Relat Cancer 18:13–26

    Article  PubMed  Google Scholar 

  • Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, Ashkenazi A, de Vos AM (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4:563–571

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Hirata S, Fukushima S, Matsunaga Y, Ito T, Uchino M, Nishimura Y, Senju S (2010) Dual effects of TRAIL in suppression of autoimmunity: the inhibition of Th1 cells and the promotion of regulatory T cells. J Immunol 185:5259–5267

    Article  PubMed  CAS  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009) Continuous neurogenesis in the adult brain. Dev Growth Differ 51:379–386

    Article  PubMed  Google Scholar 

  • Lan YH, Wu YC, Wu KW, Chung JG, Lu CC, Chen YL, Wu TS, Yang JS (2011) Death receptor 5-mediated TNFR family signaling pathways modulate γ-humulene-induced apoptosis in human colorectal cancer HT29 cells. Oncol Rep 25:419–424

    PubMed  CAS  Google Scholar 

  • Leithner K, Stacher E, Wurm R, Ploner F, Quehenberger F, Wohlkoenig C, Bálint Z, Polachova J, Olschewski A, Samonigg H (2009) Nuclear and cytoplasmic death receptor 5 as prognostic factors in patients with non-small cell lung cancer treated with chemotherapy. Lung Cancer 65:98–104

    Article  PubMed  Google Scholar 

  • Lepage C, Léger DY, Bertrand J, Martin F, Beneytout JL, Liagre B (2011) Diosgenin induces death receptor-5 through activation of p38 pathway and promotes TRAIL-induced apoptosis in colon cancer cells. Cancer Lett 301:193–202

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Manshouri T, Jilani I, Neuberg D, Patel K, Kantarjian H, Andreeff M, Estrov Z, Beran M, Keating M (2002) Proliferation and apoptosis in acute and chronic leukemias and myelodysplastic syndrome. Leuk Res 26:551–559

    Article  PubMed  Google Scholar 

  • Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890

    Article  PubMed  CAS  Google Scholar 

  • Loreto C, Almeida LE, Migliore MR, Caltabiano M, Leonardi R (2010) TRAIL, DR5 and caspase 3-dependent apoptosis in vessels of diseased human temporomandibular joint disc. An immunohistochemical study. Eur J Histochem 54:e40

    Article  PubMed  CAS  Google Scholar 

  • Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245

    Article  PubMed  Google Scholar 

  • MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:n89–n97

    Article  Google Scholar 

  • Maduro JH, Noordhuis MG, ten Hoor KA, Pras E, Arts HJ, Eijsink JJ, Hollema H, Mom CH, de Jong S, de Vries EG (2009) The prognostic value of TRAIL and its death receptors in cervical cancer. Int J Radiat Oncol Biol Phys 75:203–211

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam D, Szegezdi E, Keane M, Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35:280–288

    Article  PubMed  CAS  Google Scholar 

  • Mongiat LA, Schinder AF (2011) Adult neurogenesis and the plasticity of the dentate gyrus network. Eur J Neurosci 33:1055–1061

    Article  PubMed  Google Scholar 

  • Mori H, Sugie S, Yoshimi N, Hara A, Tanaka T (1999) Control of cell proliferation in cancer prevention. Mutat Res 428:291–298

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki T, Kikuchi H, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2009) Death receptor 5 promoter-enhancing compounds isolated from Catimbium speciosum and their enhancement effect on TRAIL-induced apoptosis. Bioorg Med Chem 17:6748–6754

    Article  PubMed  CAS  Google Scholar 

  • Oldenhuis CN, Stegehuis JH, Walenkamp AM, de Jong S, de Vries EG (2008) Targeting TRAIL death receptors. Curr Opin Pharmacol 8:433–439

    Article  PubMed  CAS  Google Scholar 

  • Ozawa F, Friess H, Kleeff J, Xu ZW, Zimmermann A, Sheikh MS, Büchler MW (2001) Effects and expression of TRAIL and its apoptosis-promoting receptors in human pancreatic cancer. Cancer Lett 163:71–81

    Article  PubMed  CAS  Google Scholar 

  • Pakala R, Pakala R, Sheng WL, Benedict CR (1999) Serotonin fails to induce proliferation of endothelial cells preloaded with eicosapentaenoic acid and docosahexaenoic acid. Atherosclerosis 145:137–146

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Bijangi-Vishehsaraei K, Safa AR (2010) Selective TRAIL-triggered apoptosis due to overexpression of TRAIL death receptor 5 (DR5) in P-glycoprotein-bearing multidrug resistant CEM/VBL1000 human leukemia cells. Int J Biochem Mol Biol 1:90–100

    PubMed  CAS  Google Scholar 

  • Peng H, Huang Y, Duan Z, Erdmann N, Xu D, Herek S, Zheng J (2005) Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J Neurosci Res 82:295–305

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS (2002) Apoptosis: a guide for the perplexed. Trends Pharmacol Sci 23:19–24

    Article  PubMed  CAS  Google Scholar 

  • Spierings DC, de Vries EG, Vellenga E, van den Heuvel FA, Koornstra JJ, Wesseling J, Hollema H, de Jong S (2004) Tissue distribution of the death ligand TRAIL and its receptors. J Histochem Cytochem 52:821–831

    Article  PubMed  CAS  Google Scholar 

  • Szegezdi E, O’Reilly A, Davy Y, Vawda R, Taylor DL, Murphy M, Samali A, Mehmet H (2009) Stem cells are resistant to TRAIL receptor-mediated apoptosis. J Cell Mol Med 13:4409–4414

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K, Aoyama T, Frese S, Ikeda H, Haynes NM (2008) Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci USA 105:10895–10900

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Wang W, Zhang Y, Liu S, Liu Y, Zheng D (2009) TRAIL receptor mediates inflammatory cytokine release in an NF-kappaB-dependent manner. Cell Res 19:758–767

    Article  PubMed  CAS  Google Scholar 

  • Thoolen B (1990) BrdUrd labeling of S-phase cells in testes and small intestine of mice, using microwave irradiation for immunogold-silver staining: an immunocytochemical study. J Histochem Cytochem 38:267–273

    Article  PubMed  CAS  Google Scholar 

  • Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89:162–175

    Article  PubMed  Google Scholar 

  • Wu GS (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett 285:1–5

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang B (2008) TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res 6:m1861–m1871

    Article  Google Scholar 

  • Zhang Y, Niu B, Yu D, Cheng X, Liu B, Deng J (2010) Radial glial cells and the lamination of the cerebellar cortex. Brain Struct Funct 215:115–122

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (Grant No. 30670688, 30771140, 31070952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Y., Li, Y., Zang, J. et al. Death Receptor 5 and Neuroproliferation. Cell Mol Neurobiol 32, 255–265 (2012). https://doi.org/10.1007/s10571-011-9757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9757-3

Keywords

Navigation