Skip to main content
Log in

The Mental Retardation Associated Protein, srGAP3 Negatively Regulates VPA-Induced Neuronal Differentiation of Neuro2A Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The Slit-Robo GTPase-activating proteins (srGAPs) are important multifunctional adaptor proteins involved in various aspects of neuronal development, including axon guidance, neuronal migration, neurite outgrowth, dendritic morphology and synaptic plasticity. Among them, srGAP3, also named MEGAP (Mental disorder-associated GTPase-activating protein), plays a putative role in severe mental retardation. SrGAP3 expression in ventricular zones of neurogenesis indicates its involvement in early stage of neuronal development and differentiation. Here, we show that overexpression of srGAP3 inhibits VPA (valproic acid)-induced neurite initiation and neuronal differentiation in Neuro2A neuroblastoma cells, whereas knockdown of srGAP3 facilitates the neuronal differentiation in this cell line. In contrast to the wild type, overexpression of srGAP3 harboring an artificially mutation R542A within the functionally important RhoGAP domain does not exert a visible inhibitory effect on neuronal differentiation. The endogenous srGAP3 selectively binds to activated form of Rac1 in a RhoGAP pull-down assay. We also show that constitutively active (CA) Rac1 can rescue the effect of srGAP3 on attenuating neuronal differentiation. Furthermore, change in expression and localization of endogenous srGAP3 is observed in neuronal differentiated Neuro2A cells. Together, our data suggest that srGAP3 could regulate neuronal differentiation in a Rac1-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

srGAP:

Slit-Robo GTPase-activating protein

VPA:

Valproic acid

CA:

Constitutively active

MEGAP:

Mental disorder-associated GAP

GAP-43:

Growth associated protein-43

FCH:

Fer/Fes CIP4 homology

SH3:

Src homology 3

F-BAR:

FCH-bin/amphiphysin/Rvs

CC:

Coiled-coil

WRP:

WAVE-associated Rac GAP

GST:

Glutathione S-transferase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

Rac1:

Ras-related C3 botulinum toxin substrate 1

RhoA:

Ras homolog gene family, member A

Cdc42:

Cell division control protein 42 homolog

References

  • Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H, Erskine L, Murakami F, Parnavelas JG (2008) The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313:648–658

    Article  PubMed  CAS  Google Scholar 

  • Aspenstrom P (2009) Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. Int Rev Cell Mol Biol 272:1–31

    Article  PubMed  Google Scholar 

  • Bacon C, Endris V, Rappold G (2009) Dynamic expression of the Slit-Robo GTPase activating protein genes during development of the murine nervous system. J Comp Neurol 513:224–236

    Article  PubMed  CAS  Google Scholar 

  • Brouns MR, Matheson SF, Settleman J (2001) p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat Cell Biol 3:361–367

    Article  PubMed  CAS  Google Scholar 

  • Dingova H, Fukalova J, Maninova M, Philimonenko VV, Hozak P (2009) Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem Cell Biol 131:425–434

    Article  PubMed  CAS  Google Scholar 

  • Duan XL, Huang WJ, Wang BR, Song JF, Jin WL, Guo X, Ju G (2003) Construction and expression of prokaryotic expression vector of GAP-43 and preparation of monoclonal antibody against GAP-43. Chin J Cell Mol Immunol 19:480–483

    CAS  Google Scholar 

  • Endris V, Wogatzky B, Leimer U, Bartsch D, Zatyka M, Latif F, Maher ER, Tariverdian G, Kirsch S, Karch D, Rappold GA (2002) The novel Rho-GTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc Natl Acad Sci USA 99:11754–11759

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Wennerberg K, Arthur WT, Noren NK, Ellerbroek SM, Burridge K (2006) Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol 406:425–437

    Article  PubMed  CAS  Google Scholar 

  • Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Gene Dev 19:1–49

    Article  PubMed  CAS  Google Scholar 

  • Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K, Jin WL, Frost A, Polleux F (2009) The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004

    Article  PubMed  CAS  Google Scholar 

  • Hivert B, Liu Z, Chuang CY, Doherty P, Sundaresan V (2002) Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci 21:534–545

    Article  PubMed  CAS  Google Scholar 

  • Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Jameson JL, Ito M (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Invest 99:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9:791–804

    Article  PubMed  CAS  Google Scholar 

  • Jin WL, Liu YY, Liu HL, Yang H, Wang Y, Jiao XY, Ju G (2003) Intraneuronal localization of Nogo-A in the rat. J Comp Neurol 458:1–10

    Article  PubMed  Google Scholar 

  • Koh CG (2006) Rho GTPases and their regulators in neuronal functions and development. Neurosignals 15:228–237

    Article  PubMed  CAS  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201

    PubMed  CAS  Google Scholar 

  • Lanning CC, Daddona JL, Ruiz-Velasco R, Shafer SH, Williams CL (2004) The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J Biol Chem 279:44197

    Article  PubMed  CAS  Google Scholar 

  • Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215

    Article  PubMed  CAS  Google Scholar 

  • Marillat V, Cases O, Nguyenf-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2001) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442:130–155

    Article  Google Scholar 

  • Mattar P, Britz O, Johannes C, Nieto M, Ma L, Rebeyka A, Klenin N, Polleux F, Guillemot F, Schuurmans C (2004) A screen for downstream effectors of Neurogenin2 in the embryonic neocortex. Dev Biol 273:373–389

    Article  PubMed  CAS  Google Scholar 

  • Moon SY, Zang H, Zheng Y (2003) Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP. J Biol Chem 278:4151–4159

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja GM, Kandpal RP (2004) Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biophys Res Commun 313:654–665

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Regan CM (1985) Therapeutic levels of sodium valproate inhibit mitotic indices in cells of neural origin. Brain Res 347:394–398

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Humphreys S, Baroni C, Cohn M (1969) In vitro differentiation of a mouse neuroblastoma. Proc Natl Acad Sci USA 64:316–323

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Richardson GA, Kroll KL (2005) The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132:105–115

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Binns KL, Wayman GA, Davee SM, Ong SH, Pawson T, Scott JD (2002) The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat Cell Biol 4:970–975

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27:355–365

    Article  PubMed  CAS  Google Scholar 

  • Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, Lanfrancone L, Toniolo D, Pelicci P (1996) An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci USA 93:695–699

    Article  PubMed  CAS  Google Scholar 

  • Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279

    Article  PubMed  CAS  Google Scholar 

  • Vogt DL, Gray CD, Young WS III, Orellana SA, Malouf AT (2007) ARHGAP4 is a novel RhoGAP that mediates inhibition of cell motility and axon outgrowth. Mol Cell Neurosci 36:332–342

    Article  PubMed  CAS  Google Scholar 

  • Waltereit R, Kautt S, Bartsch D (2008) Expression of MEGAP mRNA during embryonic development. Gene Expr Patterns 8:307–310

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y (2001) Signal transduction in neuronal migration roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107:209–221

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Vaswani KK, Lu ZH, Ledeen RW (1990) Gangliosides stimulate calcium flux in neuro 2A cells and require exogenous calcium for neuritogenesis. J Neurochem 55:484–491

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Marcello M, Endris V, Saffrich R, Fischer R, Trendelenburg MF, Sprengel R, Rappold G (2006) MEGAP impedes cell migration via regulating actin and microtubule dynamics and focal complex formation. Exp Cell Res 312:2379–2393

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Jin WL, Wang Y, Ju G (2008) Regulated shuttling of Slit-Robo-GTPase activating proteins between nucleus and cytoplasm during brain development. Cell Mol Neurobiol 28:205–221

    Article  PubMed  Google Scholar 

  • Yoo AS, Crabtree GR (2009) ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19:120–126

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Jin M, Xu X, Song Y, Wu C, Poo M, Duan S (2003) Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5:1–8

    Article  CAS  Google Scholar 

  • Yuan BZ, Jefferson AM, Millecchia L, Popescu NC, Reynolds SH (2007) Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells. Exp Cell Res 313:3868–3880

    Article  PubMed  CAS  Google Scholar 

  • Zeng M, Zhou JN (2008) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20:659–665

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yuan XB (Institute of Neuroscience, SIBS, CAS, Shanghai, China) for the gift of GFP-tagged CA-Rac Q61L, CA-Rho Q63L, CA-Cdc42 Q61L, and DN-Rac T17N constructs and Dr. Burridge K (UNC, Chapel Hill, NC) for the gift of GST-Rho GTPases (CA-Rac Q61L, CA-Rho Q63L, and CA-Cdc42 Q61L) constructs. We are grateful for the generous donation of the human KIAA0411 and KIAA 0456 clones from the Kazusa DNA Research Institute (Chiba, Japan). This work was supported by National Natural Science Foundation of China (No. 30770671 and No. 309700936) and Shanghai Leading Academic Discipline Project (No. B205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Lin Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2011_9664_MOESM1_ESM.tif

Supplementary Fig. 1. Expression of srGAPs and their upstream regulators in Neuro2A cells. RT–PCR is performed on total RNA from Neuro2A cells. The specific primers used to detect expression of Slit2, Robo1, Robo2, Robo3, srGAP1, srGAP2, srGAP3, GAPDH and β-actin in Neuro2A cells, the corresponding product size are listed in Table 1. The PCR products are subjected to a 1.5% agarose gel and visualized by ethidium bromide staining. (TIFF 1050 kb)

10571_2011_9664_MOESM2_ESM.tif

Supplementary Fig. 2. Quantification of the differentiation rates of control or srGAP3-knockdown Neuro2A cells cultured in DMEM containing 2% FBS and 20 μM Retinoic Acid. Values are means ± SEM, * p < 0.05. (TIFF 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Mi, YJ., Ma, Y. et al. The Mental Retardation Associated Protein, srGAP3 Negatively Regulates VPA-Induced Neuronal Differentiation of Neuro2A Cells. Cell Mol Neurobiol 31, 675–686 (2011). https://doi.org/10.1007/s10571-011-9664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9664-7

Keywords

Navigation