Skip to main content

Advertisement

Log in

Dynamin and Myosin Regulate Differential Exocytosis from Mouse Adrenal Chromaffin Cells

  • Report
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroendocrine chromaffin cells of the adrenal medulla represent a primary output for the sympathetic nervous system. Chromaffin cells release catecholamine as well as vaso- and neuro-active peptide transmitters into the circulation through exocytic fusion of large dense-core secretory granules. Under basal sympathetic activity, chromaffin cells selectively release modest levels of catecholamines, helping to set the “rest and digest” status of energy storage. Under stress activation, elevated sympathetic firing leads to increased catecholamine as well as peptide transmitter release to set the “fight or flight” status of energy expenditure. While the mechanism for catecholamine release has been widely investigated, relatively little is known of how peptide transmitter release is regulated to occur selectively under elevated stimulation. Recent studies have shown selective catecholamine release under basal stimulation is accomplished through a transient, restricted exocytic fusion pore between granule and plasma membrane, releasing a soluble fraction of the small, diffusible molecules. Elevated cell firing leads to the active dilation of the fusion pore, leading to the release of both catecholamine and the less diffusible peptide transmitters. Here we propose a molecular mechanism regulating the activity-dependent dilation of the fusion pore. We review the immediate literature and provide new data to formulate a working mechanistic hypothesis whereby calcium-mediated dephosphorylation of dynamin I at Ser-774 leads to the recruitment of the molecular motor myosin II to actively dilate the fusion pore to facilitate release of peptide transmitters. Thus, activity-dependent dephosphorylation of dynamin is hypothesized to represent a key molecular step in the sympatho-adrenal stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA, Robinson PJ (2006) Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9:752–760

    Article  CAS  PubMed  Google Scholar 

  • Angleson JK, Cochilla AJ, Kilic G, Nussinovitch I, Betz WJ (1999) Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytotic events. Nat Neurosci 2:440–446

    Article  CAS  PubMed  Google Scholar 

  • Artalejo CR, Henley JR, McNiven MA, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci USA 92:8328–8332

    Article  CAS  PubMed  Google Scholar 

  • Artalejo CR, Lemmon MA, Schlessinger J, Palfrey HC (1997) Specific role for the pH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells. EMBO J 16:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358–6363

    Article  CAS  PubMed  Google Scholar 

  • Aunis D (1998) Exocytosis in chromaffin cells of the adrenal medulla. Int Rev Cytol 181:213–320

    Article  CAS  PubMed  Google Scholar 

  • Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M (2009) F-actin and myosin II accelerate catecholamine release from chromaffin granules. J Neurosci 29:863–870

    Article  CAS  PubMed  Google Scholar 

  • Carmichael SW (1983) The adrenal chromaffin vesicle: an historical perspective. J Auton Nerv Syst 7:7–12

    Article  CAS  PubMed  Google Scholar 

  • Cavadas C, Silva AP, Cotrim MD, Ribeiro CA, Brunner HR, Grouzmann E (2002) Differential secretion of catecholamine and neuropeptide Y in response to KCl from mice chromaffin cells. Ann N Y Acad Sci 971:335–337

    Article  CAS  PubMed  Google Scholar 

  • Chan SA, Smith C (2001) Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells. J Physiol 537:871–885

    Article  CAS  PubMed  Google Scholar 

  • Chan SA, Smith C (2003) Low frequency stimulation of mouse adrenal slices reveals a clathrin-independent, protein kinase C-mediated endocytic mechanism. J Physiol 553:707–717

    Article  CAS  PubMed  Google Scholar 

  • Chan SA, Chow R, Smith C (2003) Calcium dependence of action potential-induced endocytosis in chromaffin cells. Pflugers Arch 445:540–546

    CAS  PubMed  Google Scholar 

  • Chen P, Gillis KD (2000) The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J 79:2162–2170

    Article  CAS  PubMed  Google Scholar 

  • Chen XK, Wang LC, Zhou Y, Cai Q, Prakriya M, Duan KL, Sheng ZH, Lingle C, Zhou Z (2005) Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nat Neurosci 8:1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Clayton EL, Anggono V, Smillie KJ, Chau N, Robinson PJ, Cousin MA (2009) The phospho-dependent dynamin–syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J Neurosci 29:7706–7717

    Article  CAS  PubMed  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Nico B, Ribatti D (2008) The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec 291:1587–1602

    Article  Google Scholar 

  • Dean C, Liu H, Dunning FM, Chang PY, Jackson MB, Chapman ER (2009) Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat Neurosci 12:767–776

    Article  CAS  PubMed  Google Scholar 

  • Doreian BW, Fulop TG, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28:4470–4478

    Article  CAS  PubMed  Google Scholar 

  • Doreian BW, Fulop TG, Meklemburg RL, Smith CB (2009) Cortical F-actin, the exocytic mode, and neuropeptide release in mouse chromaffin cells is regulated by myristoylated alanine-rich C-kinase substrate and myosin II. Mol Biol Cell 20:3142–3154

    Article  CAS  PubMed  Google Scholar 

  • Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31:819–830

    Article  CAS  PubMed  Google Scholar 

  • Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036

    Article  CAS  PubMed  Google Scholar 

  • Engisch KL, Nowycky MC (1998) Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J Physiol 506(Pt 3):591–608

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Berberian K, Gong LW, Hafez I, Sorensen JB, Lindau M (2008) The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proc Natl Acad Sci USA 105:15388–15392

    Article  CAS  PubMed  Google Scholar 

  • Felmy F (2009) Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells. Pflugers Arch 458:403–417

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Chacon R, Alvarez de Toledo G (1995) Cytosolic calcium facilitates release of secretory products after exocytotic vesicle fusion. FEBS Lett 363:221–225

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Smith C (2006) Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells. Biochem J 399:111–119

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Smith C (2007) Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells. J Neurosci Methods 166:195–202

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Doreian B, Smith C (2008) Dynamin I plays dual roles in the activity-dependent shift in exocytic mode in mouse adrenal chromaffin cells. Arch Biochem Biophys 477:146–154

    Article  CAS  PubMed  Google Scholar 

  • Galas MC, Chasserot-Golaz S, Dirrig-Grosch S, Bader MF (2000) Presence of dynamin–syntaxin complexes associated with secretory granules in adrenal chromaffin cells. J Neurochem 75:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531

    Article  CAS  PubMed  Google Scholar 

  • Giampaolo B, Angelica M, Antonio S (2002) Chromogranin ‘A’ in normal subjects, essential hypertensives and adrenalectomized patients. Clin Endocrinol 57:41–50

    Article  CAS  Google Scholar 

  • Gong LW, Di Paolo G, Diaz E, Cestra G, Diaz ME, Lindau M, De Camilli P, Toomre D (2005) Phosphatidylinositol phosphate kinase type I gamma regulates dynamics of large dense-core vesicle fusion. Proc Natl Acad Sci USA 102:5204–5209

    Article  CAS  PubMed  Google Scholar 

  • Graham ME, O’Callaghan DW, McMahon HT, Burgoyne RD (2002) Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci USA 99:7124–7129

    Article  CAS  PubMed  Google Scholar 

  • Habib KE, Gold PW, Chrousos GP (2001) Neuroendocrinology of stress. Endocrinol Metab Clin North Am 30:695–728 vii–viii

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Lindau M (1995) A novel Ca2+-dependent step in exocytosis subsequent to vesicle fusion. FEBS Lett 363:217–220

    Article  CAS  PubMed  Google Scholar 

  • Holroyd P, Lang T, Wenzel D, De Camilli P, Jahn R (2002) Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci USA 99:16806–16811

    Article  CAS  PubMed  Google Scholar 

  • Kessels MM, Qualmann B (2002) Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J 21:6083–6094

    Article  CAS  PubMed  Google Scholar 

  • Kessels MM, Qualmann B (2006) Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J Biol Chem 281:13285–13299

    Article  CAS  PubMed  Google Scholar 

  • Klevans LR, Gebber GL (1970) Comparison of differential secretion of adrenal catecholamines by splanchnic nerve stimulation and cholinergic agents. J Pharmacol Exp Ther 172:69–76

    CAS  PubMed  Google Scholar 

  • Lin HC, Gilman AG (1996) Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. J Biol Chem 271:27979–27982

    Article  CAS  PubMed  Google Scholar 

  • McMahon HT, Wigge P, Smith C (1997) Clathrin interacts specifically with amphiphysin and is displaced by dynamin. FEBS Lett 413:319–322

    Article  CAS  PubMed  Google Scholar 

  • Neco P, Giner D, Viniegra S, Borges R, Villarroel A, Gutierrez LM (2004) New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 279:27450–27457

    Article  CAS  PubMed  Google Scholar 

  • Neco P, Fernandez-Peruchena C, Navas S, Gutierrez LM, de Toledo GA, Ales E (2008) Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 283:10949–10957

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Article  CAS  PubMed  Google Scholar 

  • Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci USA 103:17955–17960

    Article  CAS  PubMed  Google Scholar 

  • Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428

    Article  CAS  PubMed  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol Biol Cell 10:501–513

    CAS  PubMed  Google Scholar 

  • Rahamimoff R, Fernandez JM (1997) Pre- and postfusion regulation of transmitter release. Neuron 18:17–27

    Article  CAS  PubMed  Google Scholar 

  • Ramaswami M, Krishnan KS, Kelly RB (1994) Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13:363–375

    Article  CAS  PubMed  Google Scholar 

  • Rose SD, Lejen T, Casaletti L, Larson RE, Pene TD, Trifaro JM (2002) Molecular motors involved in chromaffin cell secretion. Ann N Y Acad Sci 971:222–231

    Article  CAS  PubMed  Google Scholar 

  • Ryan TA (2003) Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse: the life and times of a neurosecretory granule. Proc Natl Acad Sci USA 100:2171–2173

    Article  CAS  PubMed  Google Scholar 

  • Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CI, Driscoll PC, Waterfield MD, Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J 15:6241–6250

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Neher E (1997) Multiple forms of endocytosis in bovine adrenal chromaffin cells. J Cell Biol 139:885–894

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H (2002) Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Takiyyuddin MA, Brown MR, Dinh TQ, Cervenka JH, Braun SD, Parmer RJ, Kennedy B, O’Connor DT (1994) Sympatho-adrenal secretion in humans: factors governing catecholamine and storage vesicle peptide co-release. J Auton Pharmacol 14:187–200

    Article  CAS  PubMed  Google Scholar 

  • Trifaro JM, Gasman S, Gutierrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol 192:165–172

    Article  CAS  Google Scholar 

  • Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124

    Article  CAS  PubMed  Google Scholar 

  • van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351:411–414

    Article  PubMed  Google Scholar 

  • Watkinson A, O’Sullivan AJ, Burgoyne RD, Dockray GJ (1990) Differential accumulation of catecholamines, proenkephalin- and chromogranin A-derived peptides in the medium after chronic nicotine stimulation of cultured bovine adrenal chromaffin cells. Peptides 11:435–441

    Article  CAS  PubMed  Google Scholar 

  • Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K (1995) Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys J 68:383–390

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hui E, Chapman ER, Jackson MB (2009) Phosphatidylserine regulation of Ca2+-triggered exocytosis and fusion pores in PC12 cells. Mol Biol Cell 20:5086–5095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Prattana Samasilp for helpful discussion in the preparation of this manuscript. CS and portions of this work were supported by a Grant from the NIH/NINDS (R01NS052123) and BD was supported by a training Grant from the NIH/NHLBI (T32HL07887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyue-An Chan.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9610-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, SA., Doreian, B. & Smith, C. Dynamin and Myosin Regulate Differential Exocytosis from Mouse Adrenal Chromaffin Cells. Cell Mol Neurobiol 30, 1351–1357 (2010). https://doi.org/10.1007/s10571-010-9591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9591-z

Keywords

Navigation