Skip to main content
Log in

Intravesicular Factors Controlling Exocytosis in Chromaffin Cells

  • Report
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chromaffin granules are similar organelles to the large dense core vesicles (LDCV) present in many secretory cell types including neurons. LDCV accumulate solutes at high concentrations (catecholamines, 0.5–1 M; ATP, 120–300 mM; or Ca2+, 40 mM (Bulenda and Gratzl Biochemistry 24:7760–7765, 1985). Solutes seem to aggregate to a condensed matrix to elude osmotic lysis. The affinity of solutes for LDCV matrix is responsible for the delayed release of catecholamines during exocytosis. The aggregation of solutes occurs due to a specific H+ pump denominated V-ATPase that maintains an inner acidic media (pH ≈5.5). This pH gradient against cytosol is also responsible for the vesicular accumulation of amines and Ca2+. When this gradient is reduced by modulation of the V-ATPase activity, catecholamines and Ca2+ are moved toward the cytosol. In addition, some drugs largely accumulate inside LDCV and not only impair the accumulation of natural solutes, but also act as false neurotransmitters when they are co-released with catecholamines. There is much experimental evidence to conclude that the physiological modulation of vesicle pH and the manipulation of intravesicular media with drugs affect the LDCV cargo and change the kinetics of exocytosis. Here, we will present some experimental data demonstrating the participation of drugs in the kinetics of exocytosis through changes in the composition of vesicular media. We also offer a model to explain the regulation of exocytosis by the intravesicular media that conciliate the experimentally obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

Cgs:

Chromogranins

References

  • Albillos A, Abad F, Garcia AG (1992) Cross-talk between M2 muscarinic and D1 dopamine receptors in the cat adrenal medulla. Biochem Biophys Res Commun 183:1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512

    Article  CAS  PubMed  Google Scholar 

  • Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1:40–44

    Article  CAS  PubMed  Google Scholar 

  • Alvarez de Toledo G, Fernandez-Chacon R, Fernandez JM (1993) Release of secretory products during transient vesicle fusion. Nature 363:554–558

    Article  CAS  PubMed  Google Scholar 

  • Amatore C, Bouret Y, Travis ER, Wightman RM (2000) Adrenaline release by chromaffin cells: constrained swelling of the vesicle matrix leads to full fusion. Angew Chem Int Ed 39:1952–1955

    Article  CAS  Google Scholar 

  • Ardiles AO, Maripillan J, Lagos VL, Toro R, Mora IG, Villarroel L, Ales E, Borges R, Cardenas AM (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99:29–41

    Article  CAS  PubMed  Google Scholar 

  • Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bauer RA, Khera RS, Lieber JL, Angleson JK (2004) Recycling of intact dense core vesicles in neurites of NGF-treated PC12 cells. FEBS Lett 571:107–111

    Article  CAS  PubMed  Google Scholar 

  • Borges R, Machado JD, Alonso C, Brioso MA, Gomez JF (2000) Functional role of chromogranins. The intragranular matrix in the last phase of exocytosis. Adv Exp Med Biol 482:69–81

    Article  CAS  PubMed  Google Scholar 

  • Borges R, Machado JD, Betancor G, Camacho M (2002) Pharmacological regulation of the late steps of exocytosis. Ann NY Acad Sci 971:184–192

    Article  CAS  PubMed  Google Scholar 

  • Bulenda D, Gratzl M (1985) Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry 24:7760–7765

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Montesinos MS, Criado M, Borges R (2006) Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J Neurochem 96:324–334

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  CAS  PubMed  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    CAS  PubMed  Google Scholar 

  • Crout JR, Muskus AJ, Trendelenburg U (1962) Effect of tyramine on isolated guinea-pig atria in relation to their noradrenaline stores. Br J Pharmacol Chemother 18:600–611

    CAS  PubMed  Google Scholar 

  • Diaz-Vera J, Morales YG, Hernandez-Fernaud J, Camacho M, Montesinos MS, Calegari F, Huttner WB, Borges R, Machado JD (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  CAS  PubMed  Google Scholar 

  • Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036

    Article  CAS  PubMed  Google Scholar 

  • Falkensammer G, Fischer-Colbrie R, Winkler H (1985) Biogenesis of chromaffin granules: incorporation of sulfate into chromogranin B and into a proteoglycan. J Neurochem 45:1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt G, Adams RN (1982) Determination of diffusion-coefficients by flow-injection analysis. Anal Chem 54:2618–2620

    Article  CAS  Google Scholar 

  • Gubernator NG, Zhang H, Staal RG, Mosharov EV, Pereira DB, Yue M, Balsanek V, Vadola PA, Mukherjee B, Edwards RH, Sulzer D, Sames D (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324:1441–1444

    Article  CAS  PubMed  Google Scholar 

  • Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci USA 102:13879–13884

    Article  CAS  PubMed  Google Scholar 

  • Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33

    Article  CAS  PubMed  Google Scholar 

  • Henkel AW, Meiri H, Horstmann H, Lindau M, Almers W (2000) Rhythmic opening and closing of vesicles during constitutive exo- and endocytosis in chromaffin cells. EMBO J 19:84–93

    Article  CAS  PubMed  Google Scholar 

  • Henry JP, Sagne C, Bedet C, Gasnier B (1998) The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem Int 32:227–246

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N (2006) Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 58:850–877

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes HH, Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18:857–863

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. J Physiol 568:917–929

    Article  CAS  PubMed  Google Scholar 

  • Lollike K, Borregaard N, Lindau M (1998) Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Biophys J 75:53–59

    Article  CAS  PubMed  Google Scholar 

  • Machado JD, Segura F, Brioso MA, Borges R (2000) Nitric oxide modulates a late step of exocytosis. J Biol Chem 275:20274–20279

    Article  CAS  PubMed  Google Scholar 

  • Machado JD, Morales A, Gomez JF, Borges R (2001) cAMP modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60:514–520

    CAS  PubMed  Google Scholar 

  • Machado JD, Alonso C, Morales A, Gomez JF, Borges R (2002a) Nongenomic regulation of the kinetics of exocytosis by estrogens. J Pharmacol Exp Ther 301:631–637

    Article  PubMed  Google Scholar 

  • Machado JD, Gomez JF, Betancor G, Camacho M, Brioso MA, Borges R (2002b) Hydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles. Circ Res 91:830–836

    Article  CAS  PubMed  Google Scholar 

  • Machado JD, Camacho M, Alvarez J, Borges R (2009) On the role of intravesicular calcium in the motion and exocytosis of secretory organelles. Commun Integr Biol 2:71–73

    CAS  PubMed  Google Scholar 

  • Marszalek PE, Markin VS, Tanaka T, Kawaguchi H, Fernandez JM (1995) The secretory granule matrix-electrolyte interface: a homologue of the p-n rectifying junction. Biophys J 69:1218–1229

    Article  CAS  PubMed  Google Scholar 

  • Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D, Carmona E, Castaneyra A, Viveros OH, O’Connor DT, Mahata SK, Borges R (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358

    Article  CAS  PubMed  Google Scholar 

  • Montesinos MS, Camacho M, Machado JD, Viveros OH, Beltran B, Borges R (2010) The quantal secretion of catecholamines is impaired by the accumulation of beta-adrenoceptor antagonists into chromaffin cell vesicles. Br J Pharmacol 159:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Moreno A, Lobaton CD, Santodomingo J, Vay L, Hernandez-SanMiguel E, Rizzuto R, Montero M, Alvarez J (2005) Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 37:555–564

    Article  CAS  PubMed  Google Scholar 

  • Mundorf ML, Hochstetler SE, Wightman RM (1999) Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73:2397–2405

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    CAS  PubMed  Google Scholar 

  • Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    Article  CAS  PubMed  Google Scholar 

  • Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428

    Article  CAS  PubMed  Google Scholar 

  • Philippu A, Schumann HJ (1965) Effect of alpha-methyldopa, alpha-methyldopamine, and alpha-methyl-norepinephrine on the norepinephrine content of the isolated heart. Life Sci 4:2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Pihel K, Travis ER, Borges R, Wightman RM (1996) Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. Biophys J 71:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Rutter GA, Tsuboi T (2004) Kiss and run exocytosis of dense core secretory vesicles. Neuroreport 15:79–81

    Article  PubMed  Google Scholar 

  • Santodomingo J, Vay L, Camacho M, Hernandez-Sanmiguel E, Fonteriz RI, Lobaton CD, Montero M, Moreno A, Alvarez J (2008) Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 28:1265–1274

    Article  PubMed  Google Scholar 

  • Schroeder TJ, Borges R, Finnegan JM, Pihel K, Amatore C, Wightman RM (1996) Temporally resolved, independent stages of individual exocytotic secretion events. Biophys J 70:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075

    Article  CAS  PubMed  Google Scholar 

  • von Grafenstein H, Knight DE (1992) Membrane recapture and early triggered secretion from the newly formed endocytotic compartment in bovine chromaffin cells. J Physiol 453:15–31

    Google Scholar 

  • von Grafenstein H, Knight DE (1993) Triggered exocytosis and endocytosis have different requirements for calcium and nucleotides in permeabilized bovine chromaffin cells. J Membr Biol 134:1–13

    Google Scholar 

  • Wilkinson RS, Cole JC (2001) Resolving the Heuser-Ceccarelli debate. Trends Neurosci 24:195–197

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Oh YS, Kang MK, Huh YH, So SH, Park HS, Park HY (2001) Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J Biol Chem 276:45806–45812

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Borges.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9610-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, R., Pereda, D., Beltrán, B. et al. Intravesicular Factors Controlling Exocytosis in Chromaffin Cells. Cell Mol Neurobiol 30, 1359–1364 (2010). https://doi.org/10.1007/s10571-010-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9589-6

Keywords

Navigation