Skip to main content
Log in

Ca2+ Dynamics in the Secretory Vesicles of Neurosecretory PC12 and INS1 Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have investigated the dynamics of the free [Ca2+] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca2+-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca2+] ([Ca2+]SG] was around 20–40 μM in both cell types, about half the values previously found in chromaffin cells. Inhibition of SERCA-type Ca2+ pumps with thapsigargin largely blocked Ca2+ uptake by the granules in Ca2+-depleted permeabilized cells, and the same effect was obtained when the perfusion medium lacked ATP. Consistently, the SERCA-type Ca2+ pump inhibitor benzohydroquinone induced a rapid release of Ca2+ from the granules both in intact and permeabilized cells, suggesting that the continuous activity of SERCA-type Ca2+ pumps is essential to maintain the steady-state [Ca2+]SG. Both inositol 1,4,5-trisphosphate (InsP3) and caffeine produced a rapid Ca2+ release from the granules, suggesting the presence of InsP3 and ryanodine receptors in the granules. The response to high-K+ depolarization was different in both cell types, a decrease in [Ca2+]SG in PC12 cells and an increase in [Ca2+]SG in INS1 cells. The difference may rely on the heterogeneous response of different vesicle populations in each cell type. Finally, increasing the glucose concentration triggered a decrease in [Ca2+]SG in INS1 cells. In conclusion, our data show that the secretory granules of PC12 and INS1 cells take up Ca2+ through SERCA-type Ca2+ pumps and can release it through InsP3 and ryanodine receptors, supporting the hypothesis that secretory granule Ca2+ may be released during cell stimulation and contribute to secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BHQ:

tert-Butyl benzohydroquinone

[Ca2+]SG :

Secretory granule [Ca2+]

DMPP:

1,1-Dimethyl-4-phenyl-piperazinium iodide

InsP3 :

Inositol 1,4,5-trisphosphate

SERCA:

Sarco endoplasmic reticulum Ca2+ ATPase

VAMP:

Vesicle-associated membrane protein

VAMP-mutaeq:

VAMP-mutated aequorin chimera

References

  • Allersma MW, Wang L, Axelrod D, Holz RW (2004) Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Mol Biol Cell 15:4658–4668

    Article  CAS  PubMed  Google Scholar 

  • Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, García AG, García-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Montero M (2002) Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32:251–260

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, Chen L, Palmer AE, Hille B (2006) Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Traffic 7:859–872

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Harada K, Fujishiro N, Funahashi H, Shioda S, Prestwich GD, Mikoshiba K, Inoue M (2006) Organelles containing inositol trisphosphate receptor type 2 in adrenal medullary cells. J Physiol Sci 56:415–423

    Article  CAS  PubMed  Google Scholar 

  • Fossier P, Diebler MF, Mothet JP, Israel M, Tauc L, Baux G (1998) Control of the calcium concentration involved in acetylcholine release and its facilitation: an additional role for synaptic vesicles? Neuroscience 85:85–91

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84:473–480

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV (2006) NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 119:226–238

    Article  CAS  PubMed  Google Scholar 

  • Haigh JR, Parris R, Phillips JH (1989) Free concentrations of sodium, potassium and calcium in chromaffin granules. Biochem J 259:485–491

    CAS  PubMed  Google Scholar 

  • Haynes CL, Buhler LA, Wightman RM (2006) Vesicular Ca2+-induced secretion promoted by intracellular pH-gradient disruption. Biophys Chem 123:20–24

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Yoo JA, Bahk SJ, Yoo SH (2005) Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells. FEBS Lett 579:2597–2603

    Article  CAS  PubMed  Google Scholar 

  • Hutton JC (1989) The insulin secretory granule. Diabetologia 32:271–281

    Article  CAS  PubMed  Google Scholar 

  • Iezzi M, Theander S, Janz R, Loze C, Wollheim CB (2005) SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment. J Cell Sci 118:5647–5660

    Article  CAS  PubMed  Google Scholar 

  • López-Font I, Torregrosa-Hetland CJ, Villanueva J, Gutiérrez LM (2010) t-SNARE cluster organization and dynamics in chromaffin cells. J Neurochem. doi:10.1111/j.1471-4159.2010.06872.x

  • Mahapatra NR, Mahata M, Hazra PP, McDonough PM, O’Connor DT, Mahata SK (2004) A dynamic pool of calcium in catecholamine storage vesicles: exploration in living cells by a novel vesicle-targeted chromogranin A/aequorin chimeric photoprotein. J Biol Chem 279:51107–51121

    Article  CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51

    Article  CAS  PubMed  Google Scholar 

  • Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064

    Article  CAS  PubMed  Google Scholar 

  • Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  CAS  PubMed  Google Scholar 

  • Moreno A, Lobatón CD, SantoDomingo J, Vay L, Hernández-SanMiguel E, Rizzuto R, Montero M, Alvarez J (2005) Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 37:555–564

    Article  CAS  PubMed  Google Scholar 

  • Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM (2000) Vesicular Ca2+ participates in the catalysis of exocytosis. J Biol Chem 275:9136–9142

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Chin WC, Verdugo P (1998) Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395:908–912

    Article  CAS  PubMed  Google Scholar 

  • Pouli AE, Emmanouilidou E, Zhao C, Wasmeier C, Hutton JC, Rutter GA (1998) Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem J 333:193–199

    CAS  PubMed  Google Scholar 

  • Quesada I, Chin WC, Steed J, Campos-Bedolla P, Verdugo P (2001) Mouse mast cell secretory granules can function as intracellular ionic oscillators. Biophys J 80:2133–2139

    Article  CAS  PubMed  Google Scholar 

  • Quesada I, Chin WC, Verdugo P (2003) ATP-independent luminal oscillations and release of Ca2+ and H+ from mast cell secretory granules: implications for signal transduction. Biophys J 85:963–970

    Article  PubMed  Google Scholar 

  • Santodomingo J, Vay L, Camacho M, Hernández-Sanmiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J (2008) Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 28:1265–1274

    Article  PubMed  Google Scholar 

  • Scheenen WJ, Wollheim CB, Pozzan T, Fasolato C (1998) Ca2+ depletion from granules inhibits exocytosis. A study with insulin-secreting cells. J Biol Chem 273:19002–19008

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE (2001) Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem 276:33027–33035

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Zhang M, Zhou W, Wu Z, Ding J, Chen L, Xu T (2006) Extracellular ATP stimulates exocytosis via localized Ca release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signalling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1990) Inositol 1,4,5-trisphosphate-triggered Ca2 + release from bovine adrenal medullary secretory vesicles. J Biol Chem 265:13446–13448

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministerio de Educación y Ciencia (BFU2008-01871) and from Junta de Castilla y León (VA103A08 and GR105). J.S. had a FPI (Formación de Personal Investigador) fellowship from the Spanish Ministerio de Educación y Ciencia (MEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alvarez.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9611-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SantoDomingo, J., Fonteriz, R.I., Lobatón, C.D. et al. Ca2+ Dynamics in the Secretory Vesicles of Neurosecretory PC12 and INS1 Cells. Cell Mol Neurobiol 30, 1267–1274 (2010). https://doi.org/10.1007/s10571-010-9572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9572-2

Keywords

Navigation