Skip to main content

Advertisement

Log in

cDNA Microarray Analysis of Gene Expression in the Cerebral Cortex and Hippocampus of BALB/c Mice Subjected to Chronic Mild Stress

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azpiroz A, Fano E, Garmendia L, Arregi A, Cacho R, Beitia G, Brain PF (1999) Effects of chronic mild stress (CMS) and imipramine administration, on spleen mononuclear cell proliferative response, serum corticosterone level and brain norepeinephrine content in male mice. Psychoneuroendocrinology 24:345–361

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152:973–981

    PubMed  CAS  Google Scholar 

  • Busser J, Geldmacher DS, Herrup K (1998) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 18:2801–2807

    PubMed  CAS  Google Scholar 

  • Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    PubMed  Google Scholar 

  • Conrad CD, Galea LA, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  PubMed  CAS  Google Scholar 

  • Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T (2007) Region-specific transcriptional changes following the three antidepressant treatments electroconvulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12:176–189

    Article  CAS  Google Scholar 

  • Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234

    PubMed  CAS  Google Scholar 

  • D’Aquila PS, Peana AT, Carboni V, Serra G (2000a) Different effect of desipramine on locomotor activity in quinpirole-treated rats after repeated restraint and chronic mild stress. J Psychopharmacol 14:347–352

    Article  PubMed  Google Scholar 

  • D’Aquila PS, Peana AT, Carboni V, Serra G (2000b) Exploratory behaviour and grooming after repeated restraint and chronic mild stress: effect of desipramine. Eur J Pharmacol 399:43–47

    Article  PubMed  Google Scholar 

  • Dauge V, Steimes P, Derrien M, Beau N, Roques BP, Feger J (1989) CCK8 effects on motivational and emotional states of rats involve CCKA receptors of the postero-median part of the nucleus accumbens. Pharmacol Biochem Behav 34:157–163

    Article  PubMed  CAS  Google Scholar 

  • Derrien M, Durieux C, Roques BP (1994) Antidepressant-like effects of CCKB antagonists in mice: antagonism by naltrindole. Br J Pharmacol 111:956–960

    PubMed  CAS  Google Scholar 

  • Engin E, Treit D (2007) The role of hippocampus in anxiety: intracerebral infusion studies. Behav Pharmacol 18:365–374

    Article  PubMed  CAS  Google Scholar 

  • Feddersen RM, Ehlenfeldt R, Yunis WS, Clark HB, Orr HT (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 9:955–966

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Conforti N (1985) Modifications of adrenocortical responses following frontal cortex simulation in rats with hypothalamic deafferentations and medial forebrain bundle lesions. Neuroscience 15:1045–1047

    Article  PubMed  CAS  Google Scholar 

  • Feldman S, Weidenfeld J (1999) Glucocorticoid receptor antagonists in the hippocampus modify the negative feedback following neural stimuli. Brain Res 821:33–37

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Czeh B, Flugge G (2004) Examining novel concepts of the pathophysiology of depression in the chronic psychosocial stress paradigm the tree shrews. Behav Pharmacol 15:315–325

    Article  PubMed  CAS  Google Scholar 

  • Geerlings M, Schoevers R, Beekman A (2000) Depression and risk of cognitive decline and Alzheimer’s disease. Results of two prospective community based studies in the Netherlands. Br J Psychiatry 176:575–586

    Article  Google Scholar 

  • Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2). N Engl J Med 319:413–420

    Article  PubMed  CAS  Google Scholar 

  • Gunnarsson T, Sjoberg S, Eriksson M, Nordin C (2001) Depressive symptoms in hypothyroid disorder with some observations on biochemical correlates. Neuropsychobiology 43:70–74

    Article  PubMed  CAS  Google Scholar 

  • Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Harro J, Haidkind R, Harro M, Modiri AR, Gillberg PG, Pahkla R, Matto V, Oreland L (1999) Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur Neuropsychopharmacol 10:5–16

    Article  PubMed  CAS  Google Scholar 

  • Heintz N (1993) Cell death and the cell cycle: a relationship between transformation and neurodegeneration? Trends Biochem Sci 18:157–159

    Article  PubMed  CAS  Google Scholar 

  • Hernando F, Fuentes JA, Roques BP, Ruiz-Gayo M (1994) The CCKB receptor antagonist, L-365, 260, elicits antidepressant-type effects in the forced-swim test in mice. Eur J Pharmacol 261:257–263

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Arendt T (2002) Re-expression of cell cycle proteins induces neuronal cell death during Alzheimer’s disease. J Alzheimers Dis 4:243–247

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Ho YS, Fisher MA, Lawson JA, Farhood A (1999) Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology 29:443–450

    Article  PubMed  CAS  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    Article  PubMed  CAS  Google Scholar 

  • Jorm AF (2000) Is depression a risk factor for dementia or cognitive decline? A review. Gerontology 46:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Adams DH, Simen A, Simen BB, Rajkowska G, Stockmeier CA, Overholser JC, Meltzer HY, Jurjus GJ, Konick LC, Newton SS, Duman RS (2007) Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J Neurosci 27:13329–13340

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Whang WW, Kim HT, Pyun KH, Cho SY, Hahm DH, Lee HJ (2003) Expression of neuropeptide Y and cholecystokinin in the rat brain by chronic mild stress. Brain Res 983:201–208

    Article  PubMed  CAS  Google Scholar 

  • Luine V, Martinez C, Villegas M, Magarinos AM, McEwen BS (1996) Restraint stress reversibly enhances spatial memory performance. Physiol Behav 59:27–32

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, Somozam G, De Nicolam AF (1987) Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm Metab Res 19:105–109

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    PubMed  CAS  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  PubMed  CAS  Google Scholar 

  • McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85–94

    Article  PubMed  CAS  Google Scholar 

  • McShea A, Harris PL, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 150:1933–1939

    PubMed  CAS  Google Scholar 

  • Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K, Brunklaus A, Zoechling R, Riederer P (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psychiatry Res 151:145–150

    Article  PubMed  CAS  Google Scholar 

  • Miller AH, Spencer RL, Pulera M, Kang S, McEwen BS, Stein M (1992) Adrenal steroid receptor activation in rat brain and pituitary following dexamethasone: implications for the dexamethasone suppression test. Biol Psychiatry 32:850–869

    Article  PubMed  CAS  Google Scholar 

  • Monleon S, D’Aquila P, Parra A, Simon VM, Brain PF, Willner P (1995) Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl) 117:453–457

    Article  CAS  Google Scholar 

  • Nakatani N, Aburatani H, Nishimura K, Semba J, Yoshikawa T (2004) Comprehensive expression analysis of a rat depression model. Pharmacogenomics 4:114–126

    Article  CAS  Google Scholar 

  • Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I, Kato T, Osumi N, Higuchi T, Niwa S, Yoshikawa T (2006) Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 15:1949–1962

    Article  PubMed  CAS  Google Scholar 

  • Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P (2008) Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci 27:2156–2164

    Article  PubMed  CAS  Google Scholar 

  • Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorders. Am J Psychiatry 149:999–1010

    PubMed  CAS  Google Scholar 

  • Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S (2006) Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 11:965–978

    Article  PubMed  CAS  Google Scholar 

  • Sandler M (1998) Forty years in the conceptual wilderness. Science 280:1709–1790

    Article  CAS  Google Scholar 

  • Schubert D, Piasecki D (2001) Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci 21:7455–7462

    PubMed  CAS  Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  PubMed  Google Scholar 

  • Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141:261–268

    Google Scholar 

  • Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9:1705–1711

    PubMed  CAS  Google Scholar 

  • Valverde O, Smadja C, Roques BP, Maldonado R (1997) The attenuation of morphine-conditioned place preference following chronic mild stress is reversed by a CCKB receptor antagonist. Psychopharmacology 131:79–85

    Article  PubMed  CAS  Google Scholar 

  • Van Megen HJ, Westenberg HG, den Boer JA, Kahn RS (1996) Cholecystokinin in anxiety. Eur Neuropsychopharmacol 6:263–280

    Article  PubMed  Google Scholar 

  • Verdaguer E, Garcia-Jorda E, Canudas AM, Dominguez E, Jimenez A, Pubill D, Escubedo E, Pallas JC, Camins (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport 13:413–416

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992a) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222:157–162

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Gould E, McEwen BS (1992b) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Licino J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Yamada M, Higuchi T (2005) Antidepressant-elicited changes in gene expression: remodelling of neuronal circuits as a new hypothesis for drug efficacy. Prog Neuro-psychopharmacol Biol Psychiatry 29:999–1009

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Research Funding Scheme of China (2009ZX09303) and the Youth Foundation from Institute of Basic Medical Sciences of PUMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Zuo.

Additional information

Yanyong Liu and Nan Yang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yang, N. & Zuo, P. cDNA Microarray Analysis of Gene Expression in the Cerebral Cortex and Hippocampus of BALB/c Mice Subjected to Chronic Mild Stress. Cell Mol Neurobiol 30, 1035–1047 (2010). https://doi.org/10.1007/s10571-010-9534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9534-8

Keywords

Navigation