Skip to main content

Advertisement

Log in

Systemic Administration of Lipopolysaccharide Induces Cyclooxygenase-2 Immunoreactivity in Endothelium and Increases Microglia in the Mouse Hippocampus

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we observed the effects of lipopolysaccharide (LPS) on neurodegeneration and immune response in the hippocampus. LPS is a gram-negative bacterial cell surface proteoglycan and known as a bacterial endotoxin. For this, we investigated the optimal concentration of LPS influencing the ICR mouse hippocampus to measure the LPS receptor, e.g., toll-like receptor 4 (TLR4), expression in mouse hippocampal homogenates. TLR4 expression was significantly and prominently increased in the hippocampal homogenates of the LPS (1 mg/kg)-treated group. Next, we examined pro-inflammatory response in the hippocampus using cyclooxygenase-2 (COX-2, a marker for inflammatory response) immunohistochemistry after LPS treatment. COX-2 immunoreactivity was significantly increased in the endothelium of blood vessels in the hippocampus 6 h after LPS treatment, judging from double immunofluorescence study with platelet-derived endothelial cell adhesion molecule-1 (PECAM-1, a marker for endothelial cells): it decreased 12 h and disappeared 24 h after LPS treatment. In addition, the ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive (+) microglia were morphologically activated in the mouse hippocampus after LPS treatment. At 24 h after LPS treatment, Iba-1+ microglia of activated forms were abundant in the hippocampus. However, NeuN (a neuron-specific soluble nuclear antigen)+ neurons were not significantly changed in the hippocampus after LPS treatment. Fluoro-jade B (a marker for neuronal degeneration)+ cells were not detected in the hippocampus at any time after LPS treatment. In addition, there were no significant differences in permeability of blood–brain barriers at any time points after LPS treatment. In brief, our results indicate that intraperitoneal administration of 1 mg/kg LPS effectively induces LPS receptor (TLR4) expression in the hippocampus, and the treatment increases corticosterone levels, inflammation in the blood vessels, and microglial activation in the hippocampus without any neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H (2004) Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. J Biol Chem 279:51647–51653

    Article  CAS  PubMed  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  CAS  PubMed  Google Scholar 

  • Breder CD, Saper CB (1996) Expression of inducible cyclooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Res 713:64–69

    Article  CAS  PubMed  Google Scholar 

  • Buttini M, Limonta S, Boddeke HWGM (1996) Peripheral administration of lipopolysaccharide induces activation of microglial cells in rat brain. Neurochem Int 29:25–35

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jalil E, Alvarez D, Merino N, León OS (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1995) Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 697:187–196

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1996) Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1 beta: a possible site of prostaglandin synthesis responsible for fever. Brain Res 733:263–272

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1997) Involvement of cyclooxygenase-2 in LPS-induced fever and regulation of its mRNA by LPS in the rat brain. Am J Physiol 272:R1712–R1725

    CAS  PubMed  Google Scholar 

  • Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on non hematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796

    Article  CAS  PubMed  Google Scholar 

  • Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S (2002) PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med 196:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34:73–78

    Article  CAS  PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, de Boer AG, Breimer DD (2001) Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, de Boer AB, Breimer DD (2003) Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood-brain barrier in vitro. Microvasc Res 65:24–31

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. FASEB J 17:1957–1959

    CAS  PubMed  Google Scholar 

  • Goppelt-Struebe M (1995) Regulation of prostaglandin endoperoxide synthase (cyclooxygenase) isozyme expression. Prostaglandins Leukot Essent Fatty Acids 52:213–222

    Article  CAS  PubMed  Google Scholar 

  • Guan Z, Fang J (2006) Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20:64–71

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18:117–123

    Article  CAS  PubMed  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  CAS  PubMed  Google Scholar 

  • Herschman HR (1996) Prostaglandin synthase 2. Biochim Biophys Acta 1299:125–140

    PubMed  Google Scholar 

  • Hochweller K, Anderton SM (2005) Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo. Eur J Immunol 35:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Kakucska I, Qi Y, Clark BD, Lechan RM (1993) Endotoxin-induced corticotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is mediated centrally by interleukin-1. Endocrinology 133:815–821

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Ling EA (1991) Study of the transformation of amoeboid microglial cells into microglia labelled with the isolectin Griffonia simplicifolia in postnatal rats. Acta Anat (Basel) 142:118–125

    Article  CAS  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1985) Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain. An electron microscopical study. Arch Histol Jpn 48:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kaya M, Gurses C, Kalayci R, Ekizoglu O, Ahishali B, Orhan N, Oku B, Arican N, Ustek D, Bilgic B, Elmas I, Kucuk M, Kemikler G (2008) Morphological and functional changes of blood–brain barrier in kindled rats with cortical dysplasia. Brain Res 1208:181–191

    Article  CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20:57–76

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Liu W, Roth P, Dickson DW, Berman JW, Brosnan CF (1993) Macrophage colony-stimulating factor in human fetal astrocytes and microglia. Differential regulation by cytokines and lipopolysaccharide, and modulation of class II MHC on microglia. J Immunol 150:594–604

    CAS  PubMed  Google Scholar 

  • Lee HJ, Ertley RN, Rapoport SI, Bazinet RP, Rao JS (2008) Chronic administration of lamotrigine downregulates COX-2 mRNA and protein in rat frontal cortex. Neurochem Res 33:861–866

    Article  PubMed  Google Scholar 

  • Letournel-Boulland ML, Fages C, Rolland B, Tardy M (1994) Lipopolysaccharides (LPS), up-regulate the IL-1-mRNA and down-regulate the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS)-mRNAs in astroglial primary cultures. Eur Cytokine Netw 5:51–56

    CAS  PubMed  Google Scholar 

  • Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Linthorst AC, Flachskamm C, Holsboer F, Reul JM (1995) Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic-pituitary-adrenocortical axis activity. Eur J Neurosci 7:2418–2430

    Article  CAS  PubMed  Google Scholar 

  • Maas M, Stapleton M, Bergom C, Mattson DL, Newman DK, Newman PJ (2005) Endothelial cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol 288:H159–H164

    Article  CAS  PubMed  Google Scholar 

  • Mancuso G, Midiri A, Biondo C, Beninati C, Gambuzza M, Macrì D, Bellantoni A, Weintraub A, Espevik T, Teti G (2005) Bacteroides fragilis-derived lipopolysaccharide produces cell activation and lethal toxicity via toll-like receptor 4. Infect Immun 73:5620–5627

    Article  CAS  PubMed  Google Scholar 

  • Matsumura K, Cao C, Ozaki M, Morii H, Nakadate K, Watanabe Y (1998) Electron microscopic evidence for induction of cyclooxygenase-2 in brain endothelial cells. Ann N Y Acad Sci 856:278–280

    Article  CAS  PubMed  Google Scholar 

  • Newman PJ (1997) Perspective series: cell adhesion in vascular biology. J Clin Invest 100:S25–S29

    Article  CAS  PubMed  Google Scholar 

  • Nichols NR (1999) Glial responses to steroids as markers of brain aging. J Neurobiol 40:585–601

    Article  CAS  PubMed  Google Scholar 

  • Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29:309–316

    Article  CAS  PubMed  Google Scholar 

  • Pasinetti GM (1998) Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions. J Neurosci Res 54:1–6

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Quan N, Sundar SK, Weiss JM (1994) Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol 49:125–134

    Article  CAS  PubMed  Google Scholar 

  • Quan N, Whiteside M, Herkenham M (1998) Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83:281–293

    Article  CAS  PubMed  Google Scholar 

  • Quan N, He L, Lai W (2003) Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Brain Res Bull 59:447–452

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglia activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JM, Pavel J (2006) The discovery of a novel macrophage binding site. Cell Mol Neurobiol 26:509–526

    CAS  PubMed  Google Scholar 

  • Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  • Schnydrig S, Korner L, Landweer S, Ernst B, Walker G, Otten U, Kunz D (2007) Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain. Neurosci Lett 429:69–73

    Article  CAS  PubMed  Google Scholar 

  • Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Jiang Y (2004) How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201:197–207

    Article  CAS  PubMed  Google Scholar 

  • Steiner AA, Chakravarty S, Rudaya AY, Herkenham M, Romanovsky AA (2006) Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood 107:4000–4002

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149–161

    Article  PubMed  Google Scholar 

  • Terrazzino S, Bauleo A, Baldan A, Leon A (2002) Peripheral LPS administrations up-regulate Fas and FasL on brain microglial cells: a brain protective or pathogenic event? J Neuroimmunol 124:45–53

    Article  CAS  PubMed  Google Scholar 

  • Trevin S, Kataoka Y, Kawachi R, Shuto H, Kumakura K, Oishi R (1998) Direct and continuous electrochemical measurement of noradrenaline-induced nitric oxide production in C6 glioma cells. Cell Mol Neurobiol 18:453–458

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14:483–489

    Article  CAS  PubMed  Google Scholar 

  • Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res 896:36–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee, and Ms. Hyun Sook Kim for their technical help in this study. This work was supported in part by the MRC program of MOST/KOSEF (R13-2005-022-01002-0), and in part by the Regional Core Research Program funded by the Korea Ministry of Education, Science and Technology (Medical & Bio-material Research Center).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Koo Hwang or Moo-Ho Won.

Additional information

Dae Won Chung and Ki-Yeon Yoo contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, D.W., Yoo, KY., Hwang, I.K. et al. Systemic Administration of Lipopolysaccharide Induces Cyclooxygenase-2 Immunoreactivity in Endothelium and Increases Microglia in the Mouse Hippocampus. Cell Mol Neurobiol 30, 531–541 (2010). https://doi.org/10.1007/s10571-009-9477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9477-0

Keywords

Navigation