Skip to main content

Advertisement

Log in

Pilocarpine Protects Cobalt Chloride-induced Apoptosis of RGC-5 Cells: Involvement of Muscarinic Receptors and HIF-1α Pathway

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agar A, Li S, Agarwal N, Coroneo MT, Hill MA (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200

    Article  CAS  PubMed  Google Scholar 

  • Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83:473–483

    Article  CAS  PubMed  Google Scholar 

  • Beirowski B, Babetto E, Coleman MP, Martin KR (2008) The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur J Neurosci 28:1166–1179

    Article  PubMed  Google Scholar 

  • Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28:2735–2744

    Article  CAS  PubMed  Google Scholar 

  • Chalasani ML, Radha V, Gupta V, Agarwal N, Balasubramanian D, Swarup G (2007) A glaucoma-associated mutant of optineurin selectively induces death of retinal ganglion cells which is inhibited by antioxidants. Invest Ophthalmol Vis Sci 48:1607–1614

    Article  PubMed  Google Scholar 

  • Chavez JC, Almhanna K, Berti-Mattera LN (2005) Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett 374:179–182

    Article  CAS  PubMed  Google Scholar 

  • Chen YN, Yamada H, Mao W, Matsuyama S, Aihara M, Araie M (2007) Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists. Brain Res 1148:28–37

    Article  CAS  PubMed  Google Scholar 

  • Costa VP, Harris A, Stefánsson E, Flammer J, Krieglstein GK, Orzalesi N, Heijl A, Renard JP, Serra LM (2003) The effects of antiglaucoma and systemic medications on ocular blood flow. Prog Retin Eye Res 22:769–805

    Article  CAS  PubMed  Google Scholar 

  • Cui QL, Fogle E, Almazan G (2006) Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 48:383–393

    Article  CAS  PubMed  Google Scholar 

  • De Sarno P, Shestopal SA, King TD, Zmijewska A, Song L, Jope RS (2003) Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 278:11086–11093

    Article  PubMed  Google Scholar 

  • Duncan G, Collison DJ (2003) Role of the non-neuronal cholinergic system in the eye: a review. Life Sci 72:2013–2019

    Article  CAS  PubMed  Google Scholar 

  • Espada S, Rojo AI, Salinas M, Cuadrado A (2009) The muscarinic M1 receptor activates Nrf2 through a signaling cascade that involves protein kinase C and inhibition of GSK-3beta: connecting neurotransmission with neuroprotection. J Neurochem 110:1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK, Buzzai M, Dicker DT, Mckenna WG, Bernhard EJ, El-Deiry WS (2004) Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6:597–609

    Article  CAS  PubMed  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  PubMed  Google Scholar 

  • Giordano G, Li L, White CC, Farin FM, Wilkerson HW, Kavanagh TJ, Costa LG (2009) Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. J Neurochem 109:525–538

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  • Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR (2002) Two sequence motifs from HIF-1 alpha bind to the DNA-binding site of p53. Proc Natl Acad Sci USA 99:10305–10309

    Article  CAS  PubMed  Google Scholar 

  • Hewitson KS, Schofield CJ (2004) The HIF pathway as a therapeutic target. Drug Discov Today 9:704–711

    Article  CAS  PubMed  Google Scholar 

  • Khalyfa A, Chlon T, Qiang H, Agarwal N, Cooper NG (2007) Microarray reveals complement components are regulated in the serum-deprived rat retinal ganglion cell line. Mol Vis 13:293–308

    CAS  PubMed  Google Scholar 

  • Khaw PT, Shah P, Elkington AR (2004) Glaucoma-1: diagnosis. BMJ 328:97–99

    Article  CAS  PubMed  Google Scholar 

  • Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K, Kirshenbaum LA, Gibson SB (2003) BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22:4734–4744

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy RR, Agarwal P, Prasanna G, Vopat K, Lambert W, Sheedlo HJ, Pang IH, Shade D, Wordinger RJ, Yorio T, Clark AF, Agarwal N (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86:1–12

    Article  CAS  PubMed  Google Scholar 

  • Krohn DL, Breitfeller JM (1979) Transcorneal flux of topically pilocarpine to the human aqueous. Am J Ophthalmol 187:50–56

    Google Scholar 

  • Miki A, Otori Y, Morimoto T, Okada M, Tano Y (2006) Protective effect of donepezil on retinal ganglion cells in vitro and in vivo. Curr Eye Res 31:69–77

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN, Childow G, Layton CJ, Wood JP, Casson RJ, Melena J (2004) Optic nerve and neuroprotection strategies. Eye 18:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Pereira SP, Medina SV, Araujo EG (2001) Cholinergic activity modulates the survival of retinal ganglion cells in culture: the role of M1 muscarinic receptors. Int J Dev Neurosci 19:559–567

    Article  CAS  PubMed  Google Scholar 

  • Piret JP, Mottet D, Raes M, Michiels C (2002) Is HIF-1 alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 64:889–892

    Article  CAS  PubMed  Google Scholar 

  • Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685

    Article  CAS  PubMed  Google Scholar 

  • Sadum AA (2002) Mitochondrial optic neuropathies. J Neurol Neurosurg Psychiatry 72:423–425

    Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182

    Article  CAS  PubMed  Google Scholar 

  • Shuin T, Yamazaki I, Tamura K, Kamada M, Ashida S (2004) Recent advances in ideas on the molecular pathology and clinical aspects of Von Hippele-Lindau disease. Int J Clin Oncol 9:283–287

    Article  CAS  PubMed  Google Scholar 

  • Smith LE (2003) Pathogenesis of retinopathy of prematurity. Semin Neonatol 8:469–473

    Article  PubMed  Google Scholar 

  • Styles NA, Zhu W, Li X (2005) Phosphorylation and down-regulation of Bim by muscarinic cholinergic receptor activation via protein kinase C. Neurochem Int 47:519–527

    Article  CAS  PubMed  Google Scholar 

  • Tezel G, Wax MB (2004) Hypoxia-inducible factor 1 alpha in the glaucomatous retinal and optic nerve head. Arch Ophthalmol 122:1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Vengellur A, Woods BG, Ryan HE, Johnson RS, LaPres JJ (2003) Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1alpha null mouse embryonic fibroblasts. Gene Expr 11:181–197

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Harra TK, Mitra S, Lee HM, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by Cocl2 in rat neuronal PC12 cells. Nucleic Acids Res 28:2135–2140

    Article  CAS  PubMed  Google Scholar 

  • Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33:526–534

    Article  PubMed  Google Scholar 

  • Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Zhu X, Zhu L, Cui YY, Wang H, Qi H, Ren QS, Chen HZ (2008) Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in Retinal Neurons. Cell Mol Neurobiol 28:263–275

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhou W, Cui Y, Zhu L, Li J, Xia Z, Shao B, Wang H, Chen H (2009) Muscarinic activation attenuates abnormal processing of beta-amyloid precursor protein induced by cobalt chloride-mimetic hypoxia in retinal ganglion cells. Biochem Biophys Res Commun 19(384):110–113

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30472012, 30600269, 30700280 and 30701018), the Research Fund for the Doctoral Program of Higher Education of China (20060248067 and 200802480058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhuan Chen.

Additional information

Xu Zhu and Wei Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Zhou, W., Cui, Y. et al. Pilocarpine Protects Cobalt Chloride-induced Apoptosis of RGC-5 Cells: Involvement of Muscarinic Receptors and HIF-1α Pathway. Cell Mol Neurobiol 30, 427–435 (2010). https://doi.org/10.1007/s10571-009-9467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9467-2

Keywords

Navigation