Skip to main content

Advertisement

Log in

Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical Neurons

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate excitotoxicity is involved in many neurodegenerative diseases including Alzheimer’s disease (AD). Attenuation of glutamate toxicity is one of the therapeutic strategies for AD. Wolfberry (Lycium barbarum) is a common ingredient in oriental cuisines. A number of studies suggest that wolfberry has anti-aging properties. In recent years, there is a trend of using dried Wolfberry as food supplement and health product in UK and North America. Previously, we have demonstrated that a fraction of polysaccharide from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate whether LBA can protect neurons from other pathological factors such as glutamate found in Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in primary cultured neurons. The glutamate-induced cell death as detected by lactate dehydrogenase assay and caspase-3-like activity assay was significantly reduced by LBA at concentrations ranging from 10 to 500 μg/ml. Protective effects of LBA were comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA attenuated N-methyl-d-aspartate (NMDA)-induced neuronal damage. To further explore whether LBA might function as antioxidant, we used hydrogen peroxide (H2O2) as oxidative stress inducer in this study. LBA could not attenuate the toxicity of H2O2. Furthermore, LBA did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective effects on cultured cortical neurons exposed to glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abib RT, Quincozes-Santos A, Nardin P, Wofchuk ST, Perry ML, Gonçalves CA, Gottfried C (2008) Epicatechin gallate increases glutamate uptake and S100B secretion in C6 cell lineage. Mol Cell Biochem 310:153–158. doi:10.1007/s11010-007-9675-3

    Article  CAS  PubMed  Google Scholar 

  • Amagase H, Nance DM (2008) A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) juice, GoChi. J Altern Complement Med 14(4):403–412

    Article  PubMed  Google Scholar 

  • Amodio R, Esposito E, De RC, Bellavia V, Amodio E, Carruba G (2006) Red wine extract prevents neuronal apoptosis in vitro and reduces mortality of transgenic mice. Ann NY Acad Sci 1089:88–97. doi:10.1196/annals.1386.026

    Article  CAS  PubMed  Google Scholar 

  • Arthur PG, Matich GP, Pang WW, Yu DY, Bogoyevitch MA (2007) Necrotic death of neurons following an excitotoxic insult is prevented by a peptide inhibitor of c-jun N-terminal kinase. J Neurochem 102:65–76. doi:10.1111/j.1471-4159.2007.04618.x

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668. doi:10.1007/s00018-003-3319-x

    Article  CAS  PubMed  Google Scholar 

  • Baethmann A, Staub F, Kempski O, Plesnila N, Chang RCC, Schnezder GH, Eriskat J, Stoffel M, Ringel F (1996) Glutamate enhances brain damage from ischemia and trauma. In: Ito U (ed) Maturation phenomenon in cerebral ischemia II. Springer-Verlag, Berlin, pp 43–51

    Google Scholar 

  • Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186. doi:10.1038/nm911

    Article  CAS  PubMed  Google Scholar 

  • Chan HC, Chang RCC, Koon-Ching IA, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273. doi:10.1016/j.expneurol.2006.05.031

    Article  PubMed  Google Scholar 

  • Chang RCC, So KF (2008) Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cell Mol Neurobiol 28:643–652. doi:10.1007/s10571-007-9181-x

    Article  CAS  PubMed  Google Scholar 

  • Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem 83:1215–1225. doi:10.1046/j.1471-4159.2002.01237.x

    Article  CAS  PubMed  Google Scholar 

  • Chao J, Yu MS, Ho YS, Wang M, Chang RCC (2008) Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxiciy. Free Radic Biol Med 45:1019–1026. doi:10.1016/j.freeradbiomed.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  • Chen RW, Qin ZH, Ren M, Kanai H, Chalecka-Franaszek E, Leeds P, Chuang DM (2003) Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem 84:566–575. doi:10.1046/j.1471-4159.2003.01548.x

    Article  CAS  PubMed  Google Scholar 

  • Chi CW, Wang CN, Lin YL, Chen CF, Shiao YJ (2005) Tournefolic acid B methyl ester attenuates glutamate-induced toxicity by blockade of ROS accumulation and abrogating the activation of caspases and JNK in rat cortical neurons. J Neurochem 92:692–700. doi:10.1111/j.1471-4159.2004.02912.x

    Article  CAS  PubMed  Google Scholar 

  • Chicoine LM, Bahr BA (2007) Excitotoxic protection by polyanionic polysaccharide: evidence of a cell survival pathway involving AMPA receptor-MAPK interactions. J Neurosci Res 85:294–302. doi:10.1002/jnr.21117

    Article  CAS  PubMed  Google Scholar 

  • Chicoine LM, Suppiramaniam V, Vaithianathan T, Gianutsos G, Bahr BA (2004) Sulfate- and size-dependent polysaccharide modulation of AMPA receptor properties. J Neurosci Res 75:408–416. doi:10.1002/jnr.10871

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634. doi:10.1016/0896-6273(88)90162-6

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368

    CAS  PubMed  Google Scholar 

  • Choi SH, Lee DY, Kim SU, Jin BK (2005) Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J Neurosci 25:4082–4090. doi:10.1523/JNEUROSCI.4306-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. doi:10.1126/science.7901908

    Article  CAS  PubMed  Google Scholar 

  • Dicou E, Rangon CM, Guimiot F, Spedding M, Gressens P (2003) Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Res 970:221–225. doi:10.1016/S0006-8993(03)02357-6

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Yu MM, Yuen WH, Zee SY, Chang RCC (2005) Immune modulatory effects of Prunella vulgaris L. on monocytes/macrophages. Int J Mol Med 16:1109–1116

    PubMed  Google Scholar 

  • Freudenthaler S, Pantev M (2008) Dose-response analysis to support dosage recommendations for memantine. Naunyn Schmiedebergs Arch Pharmacol 353(Suppl):R159

    Google Scholar 

  • Gardoni F, Di LM (2006) New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 545:2–10. doi:10.1016/j.ejphar.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284. doi:10.1124/pr.54.2.271

    Article  CAS  PubMed  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136. doi:10.1161/01.STR.0000025518.34157.51

    Article  PubMed  Google Scholar 

  • Golde TE (2006) Disease modifying therapy for AD? J Neurochem 99:689–707. doi:10.1111/j.1471-4159.2006.04211.x

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Yu MS, Lai CS, So KF, Yuen WH, Chang RCC (2007) Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res 1158C:123–134. doi:10.1016/j.brainres.2007.04.075

    Article  CAS  Google Scholar 

  • Hyrc K, Handran SD, Rothman SM, Goldberg MP (1997) Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J Neurosci 17:6669–6677

    CAS  PubMed  Google Scholar 

  • Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67. doi:10.1016/j.coph.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  • Kogo J, Takeba Y, Kumai T, Kitaoka Y, Matsumoto N, Ueno S, Kobayashi S (2006) Involvement of TNF-alpha in glutamate-induced apoptosis in a differentiated neuronal cell line. Brain Res 1122:201–208. doi:10.1016/j.brainres.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Quack G (1995) Cerebrospinal fluid and serum concentrations of the N-methyl-d-aspartate (NMDA) receptor antagonist memantine in man. Neurosci Lett 195:137–139. doi:10.1016/0304-3940(95)11785-U

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Kennepohl EM, Bleich S, Wiltfang J, Kraus T, Reulbach U, Meineke I (2007) Memantine pharmacotherapy: a naturalistic study using a population pharmacokinetic approach. Clin Pharmacokinet 46:599–612. doi:10.2165/00003088-200746070-00005

    Article  CAS  PubMed  Google Scholar 

  • Lai SW, Yu MS, Yuen WH, Chang RCC (2006) Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology 50:641–650. doi:10.1016/j.neuropharm.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  • Lai SW, Yu MS, Yuen WH, So KF, Zee SY, Chang RCC (2008) Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res 1190:215–224. doi:10.1016/j.brainres.2007.10.103

    Article  CAS  PubMed  Google Scholar 

  • Lauri SE, Kaukinen S, Kinnunen T, Ylinen A, Imai S, Kaila K, Taira T, Rauvala H (1999) Reg1ulatory role and molecular interactions of a cell-surface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci 19:1226–1235

    CAS  PubMed  Google Scholar 

  • Leveugle B, Ding W, Laurence F, Dehouck MP, Scanameo A, Cecchelli R, Fillit H (1998) Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J Neurochem 70:736–744

    CAS  PubMed  Google Scholar 

  • Li XM, Ma YL, Liu XJ (2006) Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J Ethnopharmacol 111:504–511. doi:10.1016/j.jep.2006.12.024

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2:155–165. doi:10.2174/1567205053585846

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Dudas B, Hejna M, Cornelli U, Lee JM, Lorens S, Mervis R, Hanin I, Fareed J (2002) The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thromb Res 105:447–453. doi:10.1016/S0049-3848(02)00050-6

    Article  CAS  PubMed  Google Scholar 

  • McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 17:2284–2294

    CAS  PubMed  Google Scholar 

  • Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442. doi:10.1254/jphs.CPJ06007X

    Article  CAS  PubMed  Google Scholar 

  • Parsons CG, Gilling KE, Jatzke C (2008) Memantine does not show intracellular block of the NMDA receptor channel. Eur J Pharmacol 587:99–103. doi:10.1016/j.ejphar.2008.03.053

    Article  CAS  PubMed  Google Scholar 

  • Pietrzik C, Behl C (2005) Concepts for the treatment of Alzheimer’s disease: molecular mechanisms and clinical application. Int J Exp Pathol 86:173–185. doi:10.1111/j.0959-9673.2005.00435.x

    Article  CAS  PubMed  Google Scholar 

  • Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378:70–87

    CAS  PubMed  Google Scholar 

  • Schubert D, Piasecki D (2001) Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci 21:7455–7462

    CAS  PubMed  Google Scholar 

  • Seveg MG (1934) Deproteinization and removal of capsular polysaccharides. Biochem Z 273:419–423

    Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265. doi:10.1016/j.brainresrev.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523. doi:10.1523/JNEUROSCI.3178-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Sinnarajah S, Suppiramaniam V, Kumar KP, Hall RA, Bahr BA, Vodyanoy V (1999) Heparin modulates the single channel kinetics of reconstituted AMPA receptors from rat brain. Synapse 31:203–209. doi:10.1002/(SICI)1098-2396(19990301)31:3≤203::AID-SYN5≥3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Sotogaku N, Tully SE, Gama CI, Higashi H, Tanaka M, Hsieh-Wilson LC, Nishi A (2007) Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons. J Neurochem 103:749–760. doi:10.1111/j.1471-4159.2007.04849.x

    Article  CAS  PubMed  Google Scholar 

  • Suen KC, Lin KF, Elyaman W, So KF, Chang RCC, Hugon J (2003) Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity. J Neurochem 87:1413–1426

    Article  CAS  PubMed  Google Scholar 

  • Suppiramaniam V, Vaithianathan T, Manivannan K, Dhanasekaran M, Parameshwaran K, Bahr BA (2006) Modulatory effects of dextran sulfate and fucoidan on binding and channel properties of AMPA receptors isolated from rat brain. Synapse 60:456–464. doi:10.1002/syn.20319

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Wood M, Maher P (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem 71:95–105

    CAS  PubMed  Google Scholar 

  • Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506. doi:10.2174/1568026013394741

    Article  CAS  PubMed  Google Scholar 

  • Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86

    CAS  PubMed  Google Scholar 

  • Wu X, Zhu D, Jiang X, Okagaki P, Mearow K, Zhu G, McCall S, Banaudha K, Lipsky RH, Marini AM (2004) AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J Neurochem 90:807–818. doi:10.1111/j.1471-4159.2004.02526.x

    Article  CAS  PubMed  Google Scholar 

  • Yazawa K, Kihara T, Shen H, Shimmyo Y, Niidome T, Sugimoto H (2006) Distinct mechanisms underlie distinct polyphenol-induced neuroprotection. FEBS Lett 580:6623–6628. doi:10.1016/j.febslet.2006.11.011

    Article  CAS  PubMed  Google Scholar 

  • Yu MS, Lai SW, Lin KF, Fang JN, Yuen WH, Chang RCC (2004) Characterization of polysaccharides from the flowers of Nerium indicum and their neuroprotective effects. Int J Mol Med 14:917–924

    CAS  PubMed  Google Scholar 

  • Yu MS, Leung SK, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang RCC (2005) Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp Gerontol 40:716–727. doi:10.1016/j.exger.2005.06.010

    Article  PubMed  Google Scholar 

  • Yu MS, Ho YS, So KF, Yuen WH, Chang RCC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157–1161

    PubMed  Google Scholar 

  • Yu MS, Wong AY, So KF, Fang JN, Yuen WH, Chang RCC (2007) New polysaccharide from Nerium indicum protects neurons via stress kinase signaling pathway. Brain Res 1153:221–230. doi:10.1016/j.brainres.2007.03.074

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bhavnani BR (2006) Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 7:49. doi:10.1186/1471-2202-7-49

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lu X, Bhavnani BR (2003) Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosci 4:32. doi:10.1186/1471-2202-4-32

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor J. N. Fang for his help in providing LBA, Miss Michelle Huie for critical reading of the manuscript. This work is supported by the HKU Alzheimer’s Disease Research Network, General Research Grant (7552/06 M) and NSFC/RGC Joint Research Scheme (N_HKU707/07M) from Research Grant Council, and HKU Seed Funding for Basic Research (200811159082) to RCCC. Also, the work is supported by Azalea (1972) Endowment Fund. WHY would like to thank for the support from the Department of Chemistry. YSH is supported by the Graduate School, MSY is supported by Postdoctoral Fellowship, The University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Chuen-Chung Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, YS., Yu, MS., Yik, SY. et al. Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical Neurons. Cell Mol Neurobiol 29, 1233–1244 (2009). https://doi.org/10.1007/s10571-009-9419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9419-x

Keywords

Navigation