Skip to main content

Advertisement

Log in

A Comparative Evaluation of the Response to Peroxynitrite by a Brain Endothelial Cell Line and Control of the Effects by Drug Targeting

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The potent oxidant peroxynitrite (ONOO) is formed after the combination of nitric oxide with superoxide and has been closely associated with the pathology of inflammatory disease. In particular, the generation of ONOO has been linked to central nervous system disorders including Alzheimer’s and Parkinson’s disease, multiple sclerosis and bacterial and viral meningitis. Specifically, ONOO has been implicated in the loss of blood–brain barrier (BBB) integrity during neuroinflammation, but the precise mechanisms through which the molecule acts to mediate neurovascular breakdown have not been established. The disruptive effects of ONOO could be mediated by either direct or indirect actions on the endothelial cells that comprise the major component of the BBB. The current study has comparatively assessed the direct toxic effects of ONOO on the brain endothelial cell line, b.End3 and C6 astrocytoma and NA neuroblastoma preparations. b.End3 cells were relatively resistant to ONOO-induced cell death compared with C6 and NA cultures. The indirect involvement of ONOO in neuroendothelial disruption was pharmacologically determined via adhesion molecule expression and immunocompetent cell attachment to b.End3 cells. ONOO-targeted drugs, including the selective free radical scavenger, uric acid, the decomposition catalyst 5,10,15,20-tetrakis (4-sulphonatophenyl) porphyrinatoiron (III) (FeTPPS) and the poly(ADP-ribose) polymerase inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ34) revealed that ONOO was only partly involved in E-selectin, ICAM-1 and VCAM-1 expression on b.End3 cells and also cytokine-induced T-lymphocyte attachment to the cell line. The results indicate that ONOO contributes to b.End3 cell disruption but is not exclusively responsible for the breakdown of neuroendothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham C, Deli M, Joo F, Megyeri P, Torpier G (1996) Intracarotid tumor necrosis factor-α administration increases the blood–brain barrier permeability in cerebral cortex of the new born pig: quantitative aspects of double-labelling studies and laser scanning analysis. Neurosci Lett 208:85–88. doi:10.1016/0304-3940(96)12546-5

    Article  PubMed  CAS  Google Scholar 

  • Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutase: role in joint diseases. Joint Bone Spine 74:324–329. doi:10.1016/j.jbspin.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic AV, Pacher JS (1998) Central nervous system endothelium in neuroinflammatory, neuroinfectious and neurodegenerative disease. J Neurosci Res 51:423–430. doi:10.1002/(SICI)1097-4547(19980215)51:4<423::AID-JNR2>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  • Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawdros R, Koprowsk H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92:12041–12045. doi:10.1073/pnas.92.26.12041

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem 375:81–88

    Google Scholar 

  • Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786. doi:10.1002/ana.410360515

    Article  PubMed  CAS  Google Scholar 

  • Bolanos JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972

    Article  PubMed  CAS  Google Scholar 

  • Bolton C, O’Neill JK, Allen S, Baker D (1997) The role of endogenous steroids in the control of chronic relapsing experimental encephalomyelitis (CREAE) in the Biozzi mouse. Int Arch Allergy Immunol 114:74–80

    Article  PubMed  CAS  Google Scholar 

  • Bolton C, Scott GS, Smith T, Flower RJ (2008) The acute and relapsing phases of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE) are ameliorated by the peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinatoiron (III) chloride (FeTPPS). Eur J Pharmacol 601:88–93. doi:10.1016/j.ejphar.2008.10.029

    Article  PubMed  CAS  Google Scholar 

  • Cannella B, Cross AH, Raine CS (1991) Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Lab Invest 65:23–31

    PubMed  CAS  Google Scholar 

  • Chiarugi A (2002) Inhibitors of poly (ADP-ribose) polymerase-1 activity suppress transcriptional activation in lymphocytes and ameliorate autoimmune encephalomyelitis in rats. Br J Pharmacol 137:761–770. doi:10.1038/sj.bjp.0704934

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, Keeling RM, Goorha S, San M, Rodi C, Wyatt PS, Manning PT, Misko TP (1996) Inducible nitric oxide synthase gene expression and enzyme activity correlate with disease activity in murine experimental autoimmune encephalomyelitis. J Neuroimmunol 71:145–153. doi:10.1016/S0165-5728(96)00147-6

    Article  PubMed  Google Scholar 

  • Cross AH, Manning PT, Stern MK, Misko TP (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80:121–130. doi:10.1016/S0165-5728(97)00145-8

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, Maning PT, Keeling RM, Schmidt RE, Misko TP (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45–56. doi:10.1016/S0165-5728(98)00078-2

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, San M, Stern MK, Keeling RM, Salvemini D, Misko TP (2000) A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J Neuroimmunol 107:21–28. doi:10.1016/S0165-5728(00)00242-3

    Article  PubMed  CAS  Google Scholar 

  • Crow JP, Ischiropoulos H (1996) Detection and quantitation of NT residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol 269:185–194. doi:10.1016/S0076-6879(96)69020-X

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, McDonald MC, Mazzon E, Dugo L, Serraino L, Threadgill M, Caputi AP, Thiemermann C (2002) Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase, in a rodent model of lung injury. Biochem Pharmacol 63:293–304. doi:10.1016/S0006-2952(01)00864-4

    Article  PubMed  CAS  Google Scholar 

  • Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E and P selectin are not required for the development of experimental allergic encephalomyelitis in C57Bl/6 and SJL mice. J Immunol 179:8470–8479

    PubMed  Google Scholar 

  • Du Y, Chen C, Tseng C-Y, Eisenberg Y, Finestein BL (2007) Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 55:463–472. doi:10.1002/glia.20472

    Article  PubMed  Google Scholar 

  • Gonsette RE (2007) Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler 14:22–34. doi:10.1177/1352458507080111

    Article  PubMed  Google Scholar 

  • Hooper DC, Scott GS, Zborek A, Mikheeva T, Kean RB, Koprowski H, Spitsin SV (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691–698

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin J, Smith C, Beckman J (1992) ONOO-mediated tyrosine nitration catalysed by superoxide dismutase. Arch Biochem Biophys 298:431–437. doi:10.1016/0003-9861(92)90431-U

    Article  PubMed  CAS  Google Scholar 

  • Jack C, Antel J, Bruck W, Kuhlmann T (2007) Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis. Glia 55:926–934. doi:10.1002/glia.20514

    Article  PubMed  Google Scholar 

  • Kauppienen TM, Suh SW, Genain CP, Swanson RA (2005) Poly (ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res 81:190–198. doi:10.1002/jnr.20525

    Article  CAS  Google Scholar 

  • Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC (2000) The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the CNS in experimental allergic encephalomyelitis through maintenance of blood–CNS barrier integrity. J Immunol 165:6511–6518

    PubMed  CAS  Google Scholar 

  • Knepler JL, Taher LN, Gupta MP, Patterson C, Pavalko F, Ober MD, Hart CM (2001) Peroxynitrite causes endothelial cell monolayer barrier dysfunction. Am J Physiol 281:C1064–C1075

    CAS  Google Scholar 

  • Lee SJ, Benveniste EN (1999) Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol 98:77–88. doi:10.1016/S0165-5728(99)00084-3

    Article  PubMed  CAS  Google Scholar 

  • Lefer DJ, Scalia R, Campbell B, Nossuli T, Hayward R, Salamon M, Grayson J, Lefer AM (1997) Peroxynitrite inhibits leukocyte–endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99:684–691. doi:10.1172/JCI119212

    Article  PubMed  CAS  Google Scholar 

  • Librizzi L, Mazzetti S, Pastori C, Frigerio S, Salmaggi A, Buccellati C, Di Gennero A, Folco G, Vitellaro-Zuccarello L, de Curtis M (2006) Activation of cerebral endothelium is required for mononuclear cell recruitment in a novel in vitro model of brain inflammation. Neuroscience 137:1211–1219. doi:10.1016/j.neuroscience.2005.10.041

    Article  PubMed  CAS  Google Scholar 

  • Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain 122:247–253. doi:10.1093/brain/122.2.247

    Article  PubMed  Google Scholar 

  • Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJL (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurones: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  • Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Gaustella DB, Dawson VL, Dawson TM (1999) Poly (ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Proc Natl Acad Sci USA 96:5774–5779. doi:10.1073/pnas.96.10.5774

    Article  PubMed  CAS  Google Scholar 

  • Megyeri P, Abraham C, Temesvari P, Kovas J, Vas T, Speer C (1992) Recombinant human tumor necrosis factor-α constricts pial arterioles and increases blood–brain barrier permeability in newborn piglets. Neurosci Lett 148:137–140. doi:10.1016/0304-3940(92)90823-P

    Article  PubMed  CAS  Google Scholar 

  • Moor ACE, De Vries HE, De Boer AG, Breimer DD (1994) The blood–brain barrier and multiple sclerosis. Biochem Pharmacol 47:1717–1724. doi:10.1016/0006-2952(94)90297-6

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Gertzberg N, Vaughan E, Weisbrot J, Woodburn R, Lambert W, Johnson A (2005) Peroxynitrite mediates TNF-α-induced endothelial barrier dysfunction and nitration of actin. Am J Physiol Lung Cell Mol Physiol 290:L674–L684. doi:10.1152/ajplung.00391.2005

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, Sakoda S, Fujimura H, Yanagihara T (1995) Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol 62:103–112. doi:10.1016/0165-5728(95)00114-H

    Article  PubMed  CAS  Google Scholar 

  • Omidi Y, Campbell L, Bara J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res 990:95–112. doi:10.1016/S0006-8993(03)03443-7

    Article  PubMed  CAS  Google Scholar 

  • Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC (2007) A peroxynitrite-dependent pathway is responsible for blood–brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 178:7334–7343

    PubMed  CAS  Google Scholar 

  • Phelps DT, Ferro TJ, Higgins PJ, Shanker R, Parker DM, Johnson A (1995) TNF-α induces the peroxynitrite-mediated depletion of lung endothelial glutathione via protein kinase C activation. Am J Physiol Lung Cell Mol Physiol 269:L551–L559

    CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KN, Freeman BA (1991a) ONOO-induced lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487. doi:10.1016/0003-9861(91)90224-7

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KN, Freeman BA (1991b) Peroxinitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95. doi:10.1006/abbi.1994.1013

    Article  PubMed  CAS  Google Scholar 

  • Raps SP, Lai JCK, Hertz L, Cooper AJL (1989) Glutathione is present in high concentration in cultured astrocytes but not in cultured neurones. Brain Res 493:398–401. doi:10.1016/0006-8993(89)91178-5

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Stern MK, Currie MG, Misko TP (1998) Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci USA 95:2659–2663. doi:10.1073/pnas.95.5.2659

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Hooper DC (2001) The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses 56:95–100. doi:10.1054/mehy.2000.1118

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Virag L, Szabo C, Hooper DC (2003) Peroxynitrite-induced oligodendrocyte toxicity is not dependent on poly (ADP-ribose) activation. Glia 41:105–116. doi:10.1002/glia.10137

    Article  PubMed  Google Scholar 

  • Scott GS, Szabo C, Hooper DC (2004a) Poly (ADP-ribose) polymerase activity contributes to peroxynitrite-induced spinal cord neuronal cell death in vitro. J Neurotrauma 21:1255–1263

    PubMed  Google Scholar 

  • Scott GS, Kean RB, Mikheeva T, Fabis MJ, Mabley JG, Szabo C, Hooper DC (2004b) The therapeutic effects of PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide.HCl], a selective inhibitor of poly (ADP-ribose) polymerase, in experimental allergic encephalomyelitis are associated with immunomodulation. J Pharmacol Exp Ther 310:1053–1061. doi:10.1124/jpet.103.063214

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Kean RB, Fabis MJ, Mikheeva T, Brimer CM, Phares TW, Spitsin SV, Hooper DC (2004c) ICAM-1 upregulation in the spinal cords of PLSJL mice with experimental allergic encephalomyelitis is dependent upon TNF-α production triggered by the loss of blood–brain barrier integrity. J Neuroimmunol 155:32–42. doi:10.1016/j.jneuroim.2004.05.011

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC (2005) Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci USA 102:3483–3488. doi:10.1073/pnas.0500307102

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C (2007) Glutamate-stimulated peroxynitrite production in a brain derived endothelial cell line is dependent on N-methyl-d-aspartate (NMDA) receptor activation. Biochem Pharmacol 73:228–236. doi:10.1016/j.bcp.2006.09.021

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD (2003) Poly (ADP-ribose) polymerase-1 in acute neuronal death and inflammation. A strategy for neuroprotection. Ann N Y Acad Sci 993:217–228

    Article  PubMed  CAS  Google Scholar 

  • Sohn HY, Krotz F, Zahler S, Gloe T, Keller M, Theisen K, Schiele TM, Klauss V, Pohl U (2003) Crucial role of local peroxynitrite formation in neutrophil-induced endothelial cell activation. Cardiovasc Res 57:804–815. doi:10.1016/S0008-6363(02)00786-1

    Article  PubMed  CAS  Google Scholar 

  • Song LI, Pachter JS (2003) Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev Biol 39:313–320. doi:10.1290/1543-706X(2003)039<0313:COMBME>2.0.CO;2

    Article  CAS  Google Scholar 

  • Soriano FG, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabo C (2001) Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nat Med 7:108–113. doi:10.1038/83241

    Article  CAS  Google Scholar 

  • Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC (2000) Protection of myelin basic protein immunised mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett 292:137–141. doi:10.1016/S0304-3940(00)01446-4

    Article  PubMed  CAS  Google Scholar 

  • Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, Uppu RM, Pryor WA (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376:333–337. doi:10.1006/abbi.2000.1721

    Article  PubMed  CAS  Google Scholar 

  • Stern MK, Jensen MP, Kramer K (1996) Peroxynitrite decomposition catalysts. J Am Chem Soc 18:8735–8736. doi:10.1021/ja961279f

    Article  Google Scholar 

  • Szabo C, Sazlman AL (1995) Endogenous peroxynitrite is involved in the inhibition of cellular respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun 209:739–743. doi:10.1006/bbrc.1995.1561

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Virag L, Cuzzocrea S, Scott GS, Hake P, O’Connor M, Zingarelli B, Salzman AL, Kun E (1998) Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly (ADP-ribose) synthetase. Proc Natl Acad Sci USA 95:3867–3872. doi:10.1073/pnas.95.7.3867

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Ischiropoulosk H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680. doi:10.1038/nrd2222

    Article  PubMed  CAS  Google Scholar 

  • Tan KH, Harrington S, Purcell WM, Hurst RD (2004) Peroxynitrite mediates nitric oxide-induced blood–brain barrier damage. Neurochem Res 29:579–587. doi:10.1023/B:NERE.0000014828.32200.bd

    Article  PubMed  CAS  Google Scholar 

  • Torreilles F, Salman-Tabcheh S, Guerin M, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30:153–163. doi:10.1016/S0165-0173(99)00014-4

    Article  PubMed  CAS  Google Scholar 

  • Touil T, Deloire-Grassin MS, Vital C, Petry KG, Brochet B (2001) In vivo damage of CNS myelin and axons induced by peroxynitrite. NeuroReport 12:3637–3644. doi:10.1097/00001756-200111160-00052

    Article  PubMed  CAS  Google Scholar 

  • Tsoa N, Hsu P, Wu C, Liu C, Lei H (2001) Tumor necrosis factor-α causes an increase in blood–brain barrier permeability during sepsis. J Med Microbiol 50:812–821

    Google Scholar 

  • van der Veen RC, Hinton DR, Incardonna F, Hofman FM (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol 77:1–7. doi:10.1016/S0165-5728(97)00013-1

    Article  PubMed  Google Scholar 

  • Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabo C (1998) Peroxynitirite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology 94:345–355. doi:10.1046/j.1365-2567.1998.00534.x

    Article  PubMed  CAS  Google Scholar 

  • Wright J, Merchant R (1994) Blood–brain barrier changes following intracerebral injection of human recombinant tumor necrosis factor in the rat. J Neurooncol 20:17–25. doi:10.1007/BF01057957

    Article  PubMed  CAS  Google Scholar 

  • Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischaemic brain injury in vivo. J Neurosci Res 53:613–625. doi:10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyders SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–688. doi:10.1126/science.8080500

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Zhang Y, Gu Y, Lewis DF, Wang Y (2004) Heme oxygenase-1 mediates up-regulation of adhesion molecule expression induced by peroxynitrite in endothelial cells. J Soc Gynecol Investig 11:465–471. doi:10.1016/j.jsgi.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  • Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabo C (1996) ONOO-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156:350–358

    PubMed  CAS  Google Scholar 

  • Zouki C, Zhang SL, Chan JS, Filep JG (2001) Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J 15:25–27

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from The William Harvey Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bolton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolton, C., Wood, E.G., Scott, G.S. et al. A Comparative Evaluation of the Response to Peroxynitrite by a Brain Endothelial Cell Line and Control of the Effects by Drug Targeting. Cell Mol Neurobiol 29, 707–717 (2009). https://doi.org/10.1007/s10571-009-9391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9391-5

Keywords

Navigation