Skip to main content

Advertisement

Log in

Gene Expression Profiling of Human Neural Progenitor Cells Following the Serum-Induced Astrocyte Differentiation

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NSC:

Neural stem cells

NPC:

Neural progenitor cells

CNS:

Central nervous system

BBB:

Blood–brain barrier

bHLH:

Basic helix-loop-helix

FBS:

Fetal bovine serum

EGF:

Epidermal growth factor

bFGF:

Basic fibroblast growth factor

LIF:

Leukemia inhibitory factor

TGF:

Transforming growth factor

RT-PCR:

Reverse transcription-polymerase chain reaction

DAVID:

Database for annotation visualization and integrated discovery

GO:

Gene Ontology

GFAP:

Glial fibrillary acidic protein

BMP4:

Bone morphogenetic protein 4

References

  • Andres-Barquin PJ, Hernandez MC, Hayes TE, McKay RD, Israel MA (1997) Id genes encoding inhibitors of transcription are expressed during in vitro astrocyte differentiation and in cell lines derived from astrocytic tumors. Cancer Res 57:215–220

    PubMed  CAS  Google Scholar 

  • Boon K, Edwards JB, Eberhart CG, Riggins GJ (2004) Identification of astrocytoma associated genes including cell surface markers. BMC Cancer 4:39. doi:10.1186/1471-2407-4-39

    Article  PubMed  Google Scholar 

  • Brguljan PM, Turk V, Nina C, Brzin J, Krizaj I, Popovic T (2003) Human brain cathepsin H as a neuropeptide and bradykinin metabolizing enzyme. Peptides 24:1977–1984. doi:10.1016/j.peptides.2003.09.018

    Article  PubMed  CAS  Google Scholar 

  • Brunet JF, Grollimund L, Chatton JY, Lengacher S, Magistretti PJ, Villemure JG, Pellerin L (2004) Early acquisition of typical metabolic features upon differentiation of mouse neural stem cells into astrocytes. Glia 46:8–17. doi:10.1002/glia.10348

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Morrow EM, Cepko CL (2000) Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 127:3021–3030

    PubMed  CAS  Google Scholar 

  • Cai Y, Wu P, Ozen M, Yu Y, Wang J, Ittmann M, Liu M (2006) Gene expression profiling and analysis of signaling pathways involved in priming and differentiation of human neural stem cells. Neuroscience 138:133–148. doi:10.1016/j.neuroscience.2005.11.041

    Article  PubMed  CAS  Google Scholar 

  • Canellada A, Ramirez BG, Minami T, Redondo JM, Cano E (2008) Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes. Glia 56:709–722. doi:10.1002/glia.20647

    Article  PubMed  Google Scholar 

  • Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278. doi:10.1006/exnr.1999.7098

    Article  PubMed  CAS  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534

    PubMed  CAS  Google Scholar 

  • Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Göttgens B, Matter JM, Guillemot F (2006) Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 11:831–844. doi:10.1016/j.devcel.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    PubMed  CAS  Google Scholar 

  • Chiang YH, Silani V, Zhou FC (1996) Morphological differentiation of astroglial progenitor cells from EGF-responsive neurospheres in response to fetal calf serum, basic fibroblast growth factor, and retinol. Cell Transplant 5:179–189. doi:10.1016/0963-6897(95)02043-8

    Article  PubMed  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:R60. doi:10.1186/gb-2003-4-9-r60

    Article  Google Scholar 

  • Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci 21:3483–3491

    PubMed  CAS  Google Scholar 

  • Eubanks JH, Puranam RS, Kleckner NW, Bettler B, Heinemann SF, McNamara JO (1993) The gene encoding the glutamate receptor subunit GluR5 is located on human chromosome 21q21.1–22.1 in the vicinity of the gene for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 90:178–182. doi:10.1073/pnas.90.1.178

    Article  PubMed  CAS  Google Scholar 

  • Gordon DL, Avery VM, Adrian DL, Sadlon TA (1992) Detection of complement protein mRNA in human astrocytes by the polymerase chain reaction. J Neurosci Methods 45:191–197. doi:10.1016/0165-0270(92)90076-P

    Article  PubMed  CAS  Google Scholar 

  • Hollnagel A, Oehlmann V, Heymer J, Rüther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274:19838–19845. doi:10.1074/jbc.274.28.19838

    Article  PubMed  CAS  Google Scholar 

  • Hoser M, Baader SL, Bösl MR, Ihmer A, Wegner M, Sock E (2007) Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J Neurosci 27:5495–5505. doi:10.1523/JNEUROSCI.1384-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Nakamura M, Dai H, Finn TP, Okano H, Toyama Y, Bregman BS (2006) Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res 84:1669–1681. doi:10.1002/jnr.21079

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R, Kitamura H (2000) Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127:3913–3921

    PubMed  CAS  Google Scholar 

  • Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411. doi:10.1016/S0014-4886(03)00087-6

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306:343–348. doi:10.1016/j.yexcr.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma Y, Hama H, Sugiyama F, Yagami K, Goto K, Murakami K, Fukamizu A (1998) Impaired blood-brain barrier function in angiotensinogen-deficient mice. Nat Med 4:1078–1080. doi:10.1038/2070

    Article  PubMed  CAS  Google Scholar 

  • Kodaira K, Imada M, Goto M, Tomoyasu A, Fukuda T, Kamijo R, Suda T, Higashio K, Katagiri T (2006) Purification and identification of a BMP-like factor from bovine serum. Biochem Biophys Res Commun 345:1224–1231. doi:10.1016/j.bbrc.2006.05.045

    Article  PubMed  CAS  Google Scholar 

  • Langlands K, Yin X, Anand G, Prochownik EV (1997) Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem 272:19785–19793. doi:10.1074/jbc.272.32.19785

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, May NR, Fan CM (2001) Growth arrest specific gene 1 is a positive growth regulator for the cerebellum. Dev Biol 236:30–45. doi:10.1006/dbio.2000.0146

    Article  PubMed  CAS  Google Scholar 

  • Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677. doi:10.1038/44334

    Article  PubMed  CAS  Google Scholar 

  • Maisel M, Herr A, Milosevic J, Hermann A, Habisch HJ, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S, Lerche H, Schwarz J, Storch A (2007) Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells 25:1231–1240. doi:10.1634/stemcells.2006-0617

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Chapman KE, Seckl JR, Ashley RH (1998) Partial cloning and differential expression of ryanodine receptor/calcium-release channel genes in human tissues including the hippocampus and cerebellum. Neuroscience 85:205–216. doi:10.1016/S0306-4522(97)00612-X

    Article  PubMed  CAS  Google Scholar 

  • Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406. doi:10.1038/nrn1908

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Ohya W, Funakoshi H, Sakaguchi G, Kato A, Takeda M, Kudo T, Nakamura T (2006) Possible role of scavenger receptor SRCL in the clearance of amyloid-β in Alzheimer’s disease. J Neurosci Res 84:874–890. doi:10.1002/jnr.20992

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M, Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873. doi:10.1073/pnas.101109698

    Article  PubMed  CAS  Google Scholar 

  • Nishino J, Yamashita K, Hashiguchi H, Fujii H, Shimazaki T, Hamada H (2004) Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension. EMBO J 23:1998–2008. doi:10.1038/sj.emboj.7600202

    Article  PubMed  CAS  Google Scholar 

  • Pallini R, Vitiani LR, Bez A, Casalbore P, Facchiano F, Di Giorgi Gerevini V, Falchetti ML, Fernandez E, Maira G, Peschle C, Parati E (2005) Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery 57:1014–1025. doi:10.1227/01.NEU.0000180058.58372.4c

    Article  PubMed  Google Scholar 

  • Probst-Cousin S, Kowolik D, Kuchelmeister K, Kayser C, Neundörfer B, Heuss D (2002) Expression of annexin-1 in multiple sclerosis plaques. Neuropathol Appl Neurobiol 28:292–300. doi:10.1046/j.1365-2990.2002.00396.x

    Article  PubMed  CAS  Google Scholar 

  • Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, Bendix I, Brüstle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385–394. doi:10.1038/ncb1700

    Article  PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552

    PubMed  CAS  Google Scholar 

  • Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418. doi:10.1016/S0962-8924(03)00147-8

    Article  PubMed  CAS  Google Scholar 

  • Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4412. doi:10.1242/dev.01273

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Ishida S, Toda K, Matsuda R, Hayashi Y, Shigetaka M, Fukuda M, Wakamatsu Y, Itai A (2005) New approaches to mechanism analysis for drug discovery using DNA microarray data combined with KeyMolnet. Curr Drug Discov Technol 2:89–98. doi:10.2174/1570163054064701

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Tabunoki H, Nanri Y, Arima K, Yamamura T (2006) Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neurosci Res 56:61–72. doi:10.1016/j.neures.2006.05.007

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 33:99–107. doi:10.1111/j.1365-2990.2006.00787.x

    Article  PubMed  CAS  Google Scholar 

  • Schwab JM, Postler E, Nguyen TD, Mittelbronn M, Meyermann R, Schluesener HJ (2000) Connective tissue growth factor is expressed by a subset of reactive astrocytes in human cerebral infarction. Neuropathol Appl Neurobiol 26:434–440. doi:10.1046/j.1365-2990.2000.00271.x

    Article  PubMed  CAS  Google Scholar 

  • Sergent-Tanguy S, Véziers J, Bonnamain V, Boudin H, Neveu I, Naveilhan P (2006) Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (−) cell populations. Differentiation 74:530–541. doi:10.1111/j.1432-0436.2006.00098.x

    Article  PubMed  CAS  Google Scholar 

  • Tatenhorst L, Senner V, Püttmann S, Paulus W (2004) Regulators of G-protein signaling 3 and 4 (RGS3, RGS4) are associated with glioma cell motility. J Neuropathol Exp Neurol 63:210–222

    PubMed  CAS  Google Scholar 

  • Taupin P, Ray J, Fischer WH, Suhr ST, Hakansson K, Grubb A, Gage FH (2000) FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron 28:385–397. doi:10.1016/S0896-6273(00)00119-7

    Article  PubMed  CAS  Google Scholar 

  • Tzeng SF, de Vellis J (1997) Expression and functional role of the Id HLH family in cultured astrocytes. Brain Res Mol Brain Res 46:136–142. doi:10.1016/S0169-328X(96)00294-X

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Hopf C, Reddy R, Cho RW, Guo L, Lanahan A, Petralia RS, Wenthold RJ, O’Brien RJ, Worley P (2003) Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39:513–528. doi:10.1016/S0896-6273(03)00463-X

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Andreasson KI, Sugiura H, Maru E, Dominique M, Irie Y, Miki N, Hayashi Y, Yoshioka M, Kaneko K, Kato H, Worley PF (1999) Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem 274:19473–19479. doi:10.1074/jbc.274.27.19473

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka R, Arao T, Yajima N, Tsuchiya N, Homma J, Tanaka R, Sano M, Oide A, Sekijima M, Nishio K (2006) Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 25:5994–6002. doi:10.1038/sj.onc.1209585

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563. doi:10.1242/dev.02419

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zhang JZ, Xu Q (2006) Genes associated with neuronal differentiation of precursors from human brain. Neuroscience 141:817–825. doi:10.1016/j.neuroscience.2006.02.080

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant to J-IS from the High-Tech Research Center Project, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (S0801043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Satoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obayashi, S., Tabunoki, H., Kim, S.U. et al. Gene Expression Profiling of Human Neural Progenitor Cells Following the Serum-Induced Astrocyte Differentiation. Cell Mol Neurobiol 29, 423–438 (2009). https://doi.org/10.1007/s10571-008-9338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9338-2

Keywords

Navigation