Skip to main content

Advertisement

Log in

Effects of Disrupting Calcium Homeostasis on Neuronal Maturation: Early Inhibition and Later Recovery

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has become increasingly clear that agents that disrupt calcium homeostasis may also be toxic to developing neurons. Using isolated primary neurons, we sought to understand the neurotoxicity of agents such as MK801 (which blocks ligand-gated calcium entry), BAPTA (which chelates intracellular calcium), and thapsigargin (TG; which inhibits the endoplasmic reticulum Ca2+-ATPase pump). Thus, E18 rat cortical neurons were grown for 1 day in vitro (DIV) and then exposed to vehicle (0.1% DMSO), MK801 (0.01–20 μM), BAPTA (0.1–20 μM), or TG (0.001–1 μM) for 24 h. We found that all three agents could profoundly influence early neuronal maturation (growth cone expansion, neurite length, neurite complexity), with the order of potency being MK801 < BAPTA < TG. We next asked if cultures exposed to these agents were able to re-establish their developmental program once the agent was removed. When we examined network maturity at 4 and 7 DIV, the order of recovery was MK801 > BAPTA > TG. Thus, mechanistically distinct ways of disrupting calcium homeostasis differentially influenced both short-term and long-term neuronal maturation. These observations suggest that agents that act by altering intracellular calcium and are used in obstetrics or neonatology may be quite harmful to the still-developing human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen CN, Brady R, Swann J, Hori N, Carpenter DO (1988) N-methyl-d-aspartate (NMDA) receptors are inactivated by trypsin. Brain Res 458:147–150

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Bradke F, Dotti CG (2000) Differentiated neurons retain the capacity to generate axons from dendrites. Curr Biol 10:1467–1470

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ, Cotman CW (1989) NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci Lett 99:268–273

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Pearce IA, Cambray-Deakin M (1988) N-methyl-d-aspartate raises cytosolic calcium concentration in rat cerebellar granule cells in culture. Neurosci Lett 91:47–52

    Article  PubMed  CAS  Google Scholar 

  • Cambray-Deakin MA, Burgoyne RD (1992) Intracellular Ca2+ and N-methyl-d-aspartate-stimulated neuritogenesis in rat cerebellar granule cell cultures. Brain Res Dev Brain Res 66:25–32

    Article  PubMed  CAS  Google Scholar 

  • Chang S, De Camilli P (2001) Glutamate regulates actin-based motility in axonal filopodia. Nat Neurosci 4:787–793

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Fass DM, Reynolds IJ (1999) Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res 849:97–108

    Article  PubMed  CAS  Google Scholar 

  • Chilton JK, Gordon-Weeks PR (2006) Role of microtubules and MAPs during neuritogenesis. In: de Curtis I (ed) Intracellular mechanisms for neuritogenesis. Springer, Milan, pp 57–88

    Chapter  Google Scholar 

  • Cuppini R, Sartini S, Ambrogini P, Falcieri E, Maltarello MC, Gallo G (1999) Control of neuron outgrowth by NMDA receptors. J Submicrosc Cytol Pathol 31:31–40

    PubMed  CAS  Google Scholar 

  • Davenport RW, Dou P, Mills LR, Kater SB (1996) Distinct calcium signaling within neuronal growth cones and filopodia. J Neurobiol 31:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    PubMed  CAS  Google Scholar 

  • Fletcher TL, Banker GA (1989) The establishment of polarity by hippocampal neurons: the relationship between the stage of a cell’s development in situ and its subsequent development in culture. Dev Biol 136:446–454

    Article  PubMed  CAS  Google Scholar 

  • Fletcher TL, De Camilli P, Banker G (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14:6695–6706

    PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau PC (1999) Axon guidance: a balance of signals sets axons on the right track. Curr Biol 9:R490–R492

    Article  PubMed  CAS  Google Scholar 

  • Gibney J, Zheng JQ (2003) Cytoskeletal dynamics underlying collateral membrane protrusions induced by neurotrophins in cultured Xenopus embryonic neurons. J Neurobiol 54:393–405

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Zheng JQ (2006) The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 7:115–125

    Article  PubMed  CAS  Google Scholar 

  • Harris LW, Sharp T, Gartlon J, Jones DN, Harrison PJ (2003) Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 18:1706–1710

    Article  PubMed  Google Scholar 

  • Heng JE, Moscaritolo K, Dreyer EB (1995) NMDA sensitivity is neurite enhanced. Neuroreport 6:1890–1892

    Article  PubMed  CAS  Google Scholar 

  • Heng JE, Zurakowski D, Vorwerk CK, Grosskreutz CL, Dreyer EB (1999) Cation channel control of neurite morphology. Brain Res Dev Brain Res 113:67–73

    Article  PubMed  CAS  Google Scholar 

  • Herschkowitz N (1988) Brain development in the fetus, neonate and infant. Biol Neonate 54:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann H, Gremme T, Hatt H, Gottmann K (2000) Synaptic activity-dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons. J Neurochem 75:1590–1599

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM Jr, Koike T, Franklin J (1992) A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol 115:163–166

    Article  PubMed  Google Scholar 

  • Kater SB, Mattson MP, Cohan C, Connor J (1988) Calcium regulation of the neuronal growth cone. Trends Neurosci 11:315–321

    Article  PubMed  CAS  Google Scholar 

  • Lema Tomé CM, Miller R, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Bryan R, Leigh A, Brady M, Busch J, Turner CP (2007) Decline in age-dependent MK801-induced injury coincides with developmental surge in parvalbumin expression: cingulate and retrosplenial cortex. Dev Psychobiol 49:606–618

    Article  PubMed  CAS  Google Scholar 

  • Lema Tomé CM, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Hlavaty C, Nelson C, Daker R, Sola R, Miller R, Bryan R, Turner CP (2006) MK801-induced caspase-3 in the postnatal brain: Inverse relationship with calcium binding proteins. Neuroscience 141:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143:S35–S45

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Wang YH, Wolfe BB, Krueger KE, Corsi L, Stocca G, Vicini S (1998) Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur J Neurosci 10:1704–1715

    Article  PubMed  CAS  Google Scholar 

  • Lin WW, Wang CW, Chuang DM (1997) Effects of depolarization and NMDA antagonists on the role survival of cerebellar granule cells: a pivotal role for protein kinase C isoforms. J Neurochem 68:2577–2586

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (1992) Calcium as sculptor and destroyer of neural circuitry. Exp Gerontol 27:29–49

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Kater SB (1987) Calcium regulation of neurite elongation and growth cone motility. J Neurosci 7:4034–4043

    PubMed  CAS  Google Scholar 

  • Ming Z, Griffith BL, Breese GR, Mueller RA, Criswell HE (2002) Changes in the effect of isoflurane on N-methyl-d-aspartic acid-gated currents in cultured cerebral cortical neurons with time in culture: evidence for subunit specificity. Anesthesiology 97:856–867

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Baraban JM (1990) Glutamate toxicity in immature cortical neurons precedes development of glutamate receptor currents. Brain Res Dev Brain Res 57:146–150

    Article  PubMed  CAS  Google Scholar 

  • Pearce IA, Cambray-Deakin MA, Burgoyne RD (1987) Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223:143–147

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142

    PubMed  CAS  Google Scholar 

  • Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande SS, Wonnacott S, Aronstam RS, Albuquerque EX (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–82

    PubMed  CAS  Google Scholar 

  • Rashid NA, Cambray-Deakin MA (1992) N-methyl-d-aspartate effects on the growth, morphology and cytoskeleton of individual neurons in vitro. Brain Res Dev Brain Res 67:301–308

    Article  PubMed  CAS  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed  Google Scholar 

  • Santama N, Dotti CG, Lamond AI (1996) Neuronal differentiation in the rat hippocampus involves a stage-specific reorganization of subnuclear structure both in vivo and in vitro. Eur J Neurosci 8:892–905

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Isla BA, Pelto DJ, Thompson JM, Rapoport SI (1984) Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Brain Res 316:263–270

    PubMed  CAS  Google Scholar 

  • Takashima S, Iida K, Deguchi K (1995) Periventricular leukomalacia, glial development and myelination. Early Hum Dev 43:177–184

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Dent EW, Kalil K (2003) Spontaneous calcium transients in developing cortical neurons regulate axon outgrowth. J Neurosci 23:927–936

    PubMed  CAS  Google Scholar 

  • Tucker LM, Morton AJ (1995) A simple method for quantifying changes in neuronal populations in primary cultures of dissociated rat brain. J Neurosci Methods 59:217–223

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Pulciani D, Rivkees SA (2002) Reduction in intracellular calcium levels induces injury in developing neurons. Exp Neurol 178:21–32

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Connell J, Blackstone K, Ringler SL (2007a) Loss of calcium and increased apoptosis within the same neuron. Brain Res 1128:50–60

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Miller R, Smith C, Brown L, Blackstone K, Dunham SR, Strehlow R, Manfredi M, Slocum P, Iverson K, West M, Ringler SL, Berry ZC (2007b) Widespread neonatal brain damage following calcium channel blockade. Dev Neurosci 29:213–231

    Article  PubMed  CAS  Google Scholar 

  • Ujihara H, Albuquerque EX (1992) Ontogeny of N-methyl-d-aspartate-induced current in cultured hippocampal neurons. J Pharmacol Exp Ther 263:859–867

    PubMed  CAS  Google Scholar 

  • Williams CV, Davenport RW, Dou P, Kater SB (1995) Developmental regulation of plasticity along neurite shafts. J Neurobiol 27:127–140

    Article  PubMed  CAS  Google Scholar 

  • Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci 16:1140–1149

    PubMed  CAS  Google Scholar 

  • Zhong J, Russell SL, Pritchett DB, Molinoff PB, Williams K (1994) Expression of mRNAs encoding subunits of the N-methyl-d-aspartate receptor in cultured cortical neurons. Mol Pharmacol 45:846–853

    PubMed  CAS  Google Scholar 

  • Zhong J, Carrozza DP, Williams K, Pritchett DB, Molinoff PB (1995) Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J Neurochem 64:531–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical support of Carla Lema Tomé. This work was supported by a Wake Forest University School of Medicine Faculty Development fund, a Mr and Mrs Tab Williams Jr and Family Neuroscience Research and Program Development Endowment, and NIH RO1 NS051632. Tissue culture procedures, imaging, and data analysis were performed by SLR, JA, EB, MA, and CPT. Manuscript and figures prepared by SLR, JA, and CPT. There are no conflicting interests for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringler, S.L., Aye, J., Byrne, E. et al. Effects of Disrupting Calcium Homeostasis on Neuronal Maturation: Early Inhibition and Later Recovery. Cell Mol Neurobiol 28, 389–409 (2008). https://doi.org/10.1007/s10571-007-9255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9255-9

Keywords

Navigation