Skip to main content

Advertisement

Log in

Spatiotemporal Expression of Dexras1 After Spinal Cord Transection in Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dexras1, a brain-enriched member of the Ras subfamily of GTPases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that increased after spinal cord injury (SCI), to specific targets to enhance NO signaling, and is strongly and rapidly induced during treatment with dexamethasone. It is unknown how the central nervous system (CNS) trauma affects the expression of Dexras1. Here we used spinal cord transection (SCT) model to detect expression of Dexras1 at mRNA and protein level in spinal cord homogenates by real-time PCR and Western blot analysis. The results showed that Dexras1 mRNA upregulated at 3 day, 5 day, and 7 day significantly (P < 0.05) that was consistent with the protein level except at 7 day. Immunofluorescence revealed that both neurons and glial cells showed Dexras1 immunoreactivivty (IR) around SCT site, but the proportion is different. Importantly, injury-induced expression of Dexras1 was co-labeled by caspase-3 (apoptotic marker) and Tau-1 (marker for pathological oligodendrocyte). Furthermore, colocalization of Dexras1, carboxy-terminal PSD95/DLG/ZO-1 (PDZ) ligand of nNOS (CAPON) and nNOS was observed in neurons and glial cells, supporting the existence of ternary complexes in this model. Thus, the results that the transient high expression of Dexras1 which localized in apoptotic neurons and pathological oligodendrocytes might provide new insight into the secondary response after SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe Y, Yamamoto T, Sugiyama Y, Watanabe T, Saito N, Kayama H, Kumagai T (1999) Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J Neurotrauma 16:945–952

    PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–137

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Bizzoco E, Vannucchi MG, Faussone-Pellegrini MS (2007) Transient ischemia increases neuronal nitric oxide synthase, argininosuccinate synthetase and argininosuccinate lyase co-expression in rat striatal neurons. Exp Neurol 204:252–259

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8:3–11

    Article  PubMed  CAS  Google Scholar 

  • Bregman B (1987) Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Dev Brain Res 34:265–279

    Article  Google Scholar 

  • Bregman B, McAtee M (1993) Embryonic CNS tissue transplantation for studies of development and regeneration. Neuroprotocols 3:17–27

    Article  CAS  Google Scholar 

  • Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571–577

    Article  PubMed  CAS  Google Scholar 

  • Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in rats. Neuroscience 103:203–218

    Article  PubMed  CAS  Google Scholar 

  • Cha CI, Kim JM, Shin DH, Kim YS, Kim J, Gurney ME, Lee KW (1998) Reactive astrocytes express nitric oxide synthase in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation. Neuroreport 9:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE, Papadopoulos V, Snyder SH (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51(4):431–440

    Article  PubMed  CAS  Google Scholar 

  • Cismowski MJ, Takesono A, Ma C, Lizano JS, Xie X, Fuernkranz H (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol 17:878–883

    Article  PubMed  CAS  Google Scholar 

  • Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, Lizano JS (2000) Activation of heterotrimeric G-protein signaling by a Ras-related protein. J Biol Chem 275:23421–23424

    Article  PubMed  CAS  Google Scholar 

  • Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, Landis ME, Festoff BW (2000) Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlate with apoptotic cell death. Exp Neurol 166:213–226

    Article  PubMed  CAS  Google Scholar 

  • Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  PubMed  CAS  Google Scholar 

  • David PS, Kourosh K, Jie L, Lowell TM, Christopher BM, John DS, Matt SR, Wolfram T (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  CAS  Google Scholar 

  • David L, Maaike T, Paula M, Manuel C, Sue F, Maria S, David OW (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26:12672–12681

    Article  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16:2479–2487

    PubMed  CAS  Google Scholar 

  • Diaz-Ruiz A, Ibarra A, Perez-Severiano F, Guizar-Sahagun G, Grijalva I, Rios C (2002) Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats. Neurosci Lett 319(3):129–132

    Article  PubMed  CAS  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes: implications for their role in neurological disease. Neuroscience 54:15–36

    Article  PubMed  CAS  Google Scholar 

  • Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920

    PubMed  CAS  Google Scholar 

  • Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  PubMed  CAS  Google Scholar 

  • Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS (1998) Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18:923–931

    PubMed  CAS  Google Scholar 

  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–93

    Article  PubMed  CAS  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner SM (1995) Modulation and control of intracellular calcium. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford UP, New York, pp 273–288

  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS rauma. J Neurosci 19:8182–8198

    PubMed  CAS  Google Scholar 

  • Genovese T, Mazzon E, Mariotto S, Menegazzi M, Cardali S, Conti A, Suzuki H, Bramanti P, Cuzzocrea S (2006) Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury. J Neurosurg Spine 4(2):145–153

    Article  PubMed  Google Scholar 

  • Graham TE, Prossnitz ER, Dorin RI (2002) Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J Biol Chem 277:10876–10882

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Qiao Z, Dorin RI (2004) Dexras1 inhibits adenylyl cyclase. Biochem Biophys Res Commun 316:307–12

    Article  PubMed  CAS  Google Scholar 

  • Gresle MM, Jarrott B, Jones NM, Callaway JK (2006) Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 1110:13–22

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: proper-ties and catalytic mechanism. Annu Rev Physiol 7:707–736

    Article  Google Scholar 

  • Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168:273–282

    Article  PubMed  CAS  Google Scholar 

  • Gruner HS, Lee G, John SW, Maeda N, Smithies O (2002) Molecular phenotyping for analyzing subtle genetic effects in mice: application to an angiotensinogen gene titration. Proc Natl Acad Sci USA 99:4602–4607

    Article  CAS  Google Scholar 

  • Heneka MT, Loschmann PA, Gleichmann M, Weller M, Schulz JB, Wullner U, Klockgether T (1998) Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-a/lipopolysaccharide. J Neurochem 71:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hiskens R, Vatish M, Hill C, Davey J, Ladds G (2005) Specific in vivo binding of activator of G protein signaling 1 to the Gβ1 subunit. Biochem Biophys Res Commun 337:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20:115–124

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Fang M, Snyder SH (2002) Nitrosopeptide mapping: a novel methodology reveals S-nitrosylation of dexras1 on a single cysteine residue. Chem Biol 9:1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Kemppainen RJ, Behrend EN (1998) Dexamethasone rapidly induces a novel Ras superfamily member-related gene in AtT-20 cells. J Biol Chem 273:3129–31

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS (2006) Remodeling of synaptic structures in the motor cortex following spinal cord injury. Exp Neurol 198:401–415

    Article  PubMed  Google Scholar 

  • Kugler P, Drenckhahn D (1996) Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16:165–173

    Article  PubMed  CAS  Google Scholar 

  • Larner AJ, Johnson AR, Keynes RJ (1995) Regeneration in the vertebrate central nervous system: phylogeny, ontogeny, and mechanisms. Biol Rev 70:597–619

    Article  PubMed  CAS  Google Scholar 

  • Li GL, Farooque M, Holtz A (1999) Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol 98:473–480

    Article  PubMed  CAS  Google Scholar 

  • Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    PubMed  CAS  Google Scholar 

  • Liuzzi FJ, Lasek RJ (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237:642–645

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Chen K, Liu Z (2005) Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25:6449–6459

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama Y, Sato K, Kamiya M, Yano J, Iwata H, Isobe KI (1998) Nitric oxide: a possible etiologic factor in spinal cord cavitation. J Spinal Disord 11:248–252

    Article  PubMed  CAS  Google Scholar 

  • Miscusi M (2002) The role of constitutive nitric oxide synthase in pathogenesis of secondary lesion after spinal cord injury. Preliminary results. J Neurosurg Sci 46:55–59

    PubMed  CAS  Google Scholar 

  • Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CH, Watts VJ (2005) Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1. Biochem Biophys Res Commun 332:913–920

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CH, Watts VJ (2006) dexamethasone-induced Ras protein 1 negative regulate protein kinase C delta: implication for adenylyl cyclase 2 signaling. Mol Pharmocal 69(5):1763–1771

    Article  CAS  Google Scholar 

  • Nianzhen L, Jai-Yoon S, Philip GH (2003) A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci 23(32):10302–10310

    Google Scholar 

  • Perry VH, Brown MC, Lunn ER (1991) Very slowr etrograde and Wallerian degeneration in the CNS of C57BL/Ola mice. Eur J Neurosci 3:102–105

    Article  PubMed  CAS  Google Scholar 

  • Rameau GA, Chiu LY, Ziff EB (2004) Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-Methyl-d-aspartate receptor. J Biol Chem 279:14307–14314

    Article  PubMed  CAS  Google Scholar 

  • Rudge JS, Silver J (1990) Inhibition of neurite growth on astroglial scars in vitro. J Neurosci 10:3594–3603

    PubMed  CAS  Google Scholar 

  • Rutter AR, Stephenson FA (2000) Coexpression of postsynaptic density-95 protein with NMDA receptors results in enhanced receptor expression together with a decreased sensitivity to l-glutamate. J Neurochem 75:2501–2510

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59:447–456

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Wiklund L, Badgaiyan RD, Mohanty S, Alm P (2006) Intracerebral administration of neuronal nitric oxide synthase antiserum attenuates traumatic brain injury-induced blood–brain barrier permeability, brain edema formation, and sensory motor disturbances in the rat. Acta Neurochir Suppl 96:288–294

    Article  PubMed  Google Scholar 

  • Shen A, Chen M, Niu S, Sun L, Gao S, Shi S, Li X, Lv Q, Guo Z, Cheng C (2007) Changes in mRNA for CAPON and Dexras1 in adult rat following sciatic nerve transaction. J Chem Neuroanat doi:10.1016/j.jchemneu.2007.07.004

  • Shuman SL, Bresnahan JC, Beattie MS (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50:798–808

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Azbill RD, Knapp PE (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5:943–946

    Article  PubMed  CAS  Google Scholar 

  • Takesono A, Nowak MW, Cismowski M, Duzic E, Lanier SM (2002) Activator of G-protein signaling 1 blocks GIRK channel activation by a G-protein-coupled receptor: apparent disruption of receptor signaling complexes. J Biol Chem 277:13827–13830

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan G, Cismowski MJ, Wang G, Vincent TS, Brown KD, Lanier SM (2004) The Ras-related protein AGS1/RASD1 suppresses cell growth. Oncogene 23:5858–5863

    Article  PubMed  CAS  Google Scholar 

  • Yanase M, Sakou T, Fukuda T (1995) Role of N-methyl-d-aspartate receptor in acute spinal cord injury. J Neurosurg 83:884–888

    PubMed  CAS  Google Scholar 

  • Yong C, Arnold PM, Zoubine MN, Citron BA, Watanabe I, Berman NE, Festoff BW (1998) Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J Neurotrauma 15:459–72

    PubMed  CAS  Google Scholar 

  • Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11:13–22

    Article  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263:687–689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30300099, No. 30770488), Natural Science Foundation of Jiangsu province (No. BK2003035, No. BK2006547), and “Six Talent Peak” Foundation of Jiangsu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Shen.

Additional information

Xin Li, Chun Cheng, and Min Fei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Cheng, C., Fei, M. et al. Spatiotemporal Expression of Dexras1 After Spinal Cord Transection in Rats. Cell Mol Neurobiol 28, 371–388 (2008). https://doi.org/10.1007/s10571-007-9253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9253-y

Keywords

Navigation