Skip to main content
Log in

Dynamic Changes in Brain Activations and Functional Connectivity during Affectively Different Tactile Stimuli

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Thomas PS, Krauss BR, Szeverenyi NM (2001) Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett 311(3):193–197

    Article  PubMed  CAS  Google Scholar 

  • Bartels A, Zeki S (2000) The neural basis of romantic love. NeuroReport 11:3829–3834

    Article  PubMed  CAS  Google Scholar 

  • Bingel U, Glascher J, Weiller C, Buchel C (2004) Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex 14:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planner MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  • Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulated cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976

    PubMed  CAS  Google Scholar 

  • Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulated cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99:523–528

    Article  PubMed  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MRI (fcMRI) Am. J Neuroradiol 21:1636–1644

    CAS  Google Scholar 

  • Cordes D, Haughton V, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand E (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333

    PubMed  CAS  Google Scholar 

  • Cox RW (1996) AFNI software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  PubMed  CAS  Google Scholar 

  • Craig AD (1996) Pain, temperature and the sense of the body. In: Franzen O, Johansson R, Terenius L (eds) Somesthesis and the neurobiology of the somatosensory cortex. Birkhauser, Basel, pp 27–39

    Google Scholar 

  • Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3(2):184–190

    Article  PubMed  CAS  Google Scholar 

  • Critchley HD, Melmed RN, Featherstone E, Mathias CJ, Dolan RJ (2002) Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 16(4):909–919

    Article  PubMed  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84:392–402

    Article  Google Scholar 

  • Derbyshire SWG, Jones AKP, Gyulai F, Clark S, Townsend D, Firestone LL (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73:431–445

    Article  PubMed  CAS  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulated cortex to behaviour. Brain 118:279–306

    Article  PubMed  Google Scholar 

  • Dunbar R (1996) Grooming, gossip, and the evolution of language. Faber & Faber, London

    Google Scholar 

  • Essick GK, James A, McGlone FP (1999) Psychophysical assessment of the affective components of non-painful touch. Neuroreport 10:2083–2087

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Henson RNA (2001) Frontal lobes and human memory—insights from functional neuroimaging. Brain 124:849–881

    Article  PubMed  CAS  Google Scholar 

  • Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A, Clare S, Smith E (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. NeuroReport 10:453–459

    Article  PubMed  CAS  Google Scholar 

  • Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252:323–347

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53

    Article  PubMed  CAS  Google Scholar 

  • Gardner EP, Kandel ER (2000) Touch. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 451–470

    Google Scholar 

  • Golay X, Kollias S, Stoll G, Merier D, Valavanis A, Boesiger PA (1998) New correlation-based fuzzy logic clustering algorithm for fMRI. J Magn Res Med 40:249–260

    Article  CAS  Google Scholar 

  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdale and orbitofrontal cortex. Science 301:1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon v (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  PubMed  CAS  Google Scholar 

  • Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262

    Article  PubMed  Google Scholar 

  • Halsband U, Ito N, Tanji J, Freund HJ (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116:243–266

    Article  PubMed  Google Scholar 

  • Holmes AP, Friston KJ (1998) Generalisability, random effects and population inference. Neuroimage 7:754

    Google Scholar 

  • Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central presentation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63:225–236

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, He Y Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22:63–74

    Article  PubMed  Google Scholar 

  • Kass JH (1993) The functional organization of the somatosensory cortex in primates. Anat Anz 175:509–518

    Google Scholar 

  • Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Lopez L, Sanjuan MAF (2002) Relation between structure and size in social networks. Phys Rev E 65:036107

    Article  CAS  Google Scholar 

  • Lorenz J, Cross D, Minoshima S, Morrow T, Paulson P, Casey K (2002) A unique representation of heat allodynia in the human brain. Neuron 35(2):383–393

    Article  PubMed  CAS  Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multisclice echoplannar imaging using resting state fluctuations. Neuroimage 7:119–132

    Article  PubMed  CAS  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–897

    Article  PubMed  CAS  Google Scholar 

  • Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell AC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5(9):900–904

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York

    Google Scholar 

  • Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85:19–30

    Article  PubMed  CAS  Google Scholar 

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30:263–288

    Article  PubMed  CAS  Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348

    Article  PubMed  Google Scholar 

  • Rainville P, Duncan GH, Price DD (1997) Pain affect encoded in human anterior cingulated but not somatosensory cortex. Science 277:968–971

    Article  PubMed  CAS  Google Scholar 

  • Rainville P, Hofbauer RK, Paus T, Duncan GH, Bushnell MC, Price DD (1999) Cerebral mechanisms of hypnotic induction and suggestion. J Cogn Neurosci 11(1):110–125

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (1999) The brain and emotion. Oxford University Press, New York

    Google Scholar 

  • Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulated cortices. Cereb Cortex 13(3):308–317

    Article  PubMed  CAS  Google Scholar 

  • Rowe JB, Toni I, Josephs O, Frackowiak RSJ, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288:1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel MC, Weder B, Binkofski F, Buccino G, Shah NJ, Seitz RJ (2003) A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study. Neuroimage 19:1103–1114

    Article  PubMed  Google Scholar 

  • Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763

    PubMed  CAS  Google Scholar 

  • Van Hoesen GW, Morecraft RJ, Vogt BA (1993) Connections of the monkey cingulated cortex. In: Vogt BA, Gabriel M (eds) The neurobiology of the cingulated cortex and limbic thalamus: a comprehensive handbook. Birkhauser, Boston, pp 249–284

    Google Scholar 

  • Vogt BA (2005) Pain and emotion interactions in subregions of the cingulated gyrus. Nat Rev Neurosci 6:533–544

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulated cortex in the monkey. Science 204:205–207

    Article  PubMed  CAS  Google Scholar 

  • Warren JE, Sauter DA, Eisner F, Wiland J, Dresner MA, Wise RJS, Rosen S, Scott SK (2006) Positive emotions preferentially engage an auditory-motor “mirror” system. J Neurosci 26(50):13067–13075

    Article  PubMed  CAS  Google Scholar 

  • Wessberg J, Olausson H, Fernstrom KW, Vallbo AB (2003) Receptive field properties of nmyelinated tactile afferents in the human skin. J Neurophysiol 89:1567–1575

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by 211 project to JYL, a grant from National Natural Science Foundation of China (30700223) to JYW, NNSF grants (30370461, 30570577, and 30770688), the 100 Talented Plan of the Chinese Academy of Sciences, and the 863 project (2006AA02Z431) of China to FL. The authors would like to thank Prof. Tianzi Jiang, Institute of Automation, Chinese Academy of Science, for his functional connectivity analysis algorithm and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Luo.

Appendix

Appendix

In this study, functional connectivity network analysis is based on graph theory. Therefore, the nodes denote the brain regions (ROIs) and the links denote the connections or information flow. In this way, we can define the total connectivity degree \( \Upgamma _{i} \) of node i in a graph as the sum of all the connectivity degrees between i and all other nodes, i.e.,

$$ \Upgamma _{i} = {\sum\nolimits_{j = 1}^n {\eta _{{ij}} } } $$

where \( \eta _{{ij}} \) is the connectivity degree between the node i and the node \, defined by the exponential function of the distance between them (Lopez and Sanjuan 2002),

$$ \eta _{{ij}} = e^{{ - \xi d_{{ij}} }} $$

where, ξ is a real positive constant, measuring how the strength of the relationship decreases with the distance between the two nodes [ξ is a subjective selection and discussed by Lopez and Sanjuan (2002) and is here fixed to ξ = 2], and d ij is the distance between the two nodes, calculated as a hyperbolic correlation measure (Golay et al. 1998),

$$ d_{{ij}} = (1 - c_{{ij}} )/(1 + c_{{ij}} ) $$

where c ij represents the Pearson correlation coefficient between the two nodes (i.e., cross-correlating two mean time series of the above).

In addition, as there are different touch conditions and different preprocessing in this study, we normalized \( \Upgamma _{i} \) of a node i, namely,

$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{\Upgamma }_{i} = \Upgamma _{i} /{\sum\nolimits_{j = 1}^n {\Upgamma _{j} } } $$

The normality of the distribution of the \( \ifmmode\expandafter\bar\else\expandafter\=\fi{\Upgamma }_{i} \) values for all conditions was tested using the Jarque-Bera test.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, QP., Zeng, XZ., Liu, JY. et al. Dynamic Changes in Brain Activations and Functional Connectivity during Affectively Different Tactile Stimuli. Cell Mol Neurobiol 28, 57–70 (2008). https://doi.org/10.1007/s10571-007-9228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9228-z

Keywords

Navigation