Skip to main content

Advertisement

Log in

Enhanced [3H] Glutamate Binding in the Cerebellum of Insulin-Induced Hypoglycaemic and Streptozotocin-Induced Diabetic Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aim Energy deprivation causes neuronal death affecting the cognitive and memory ability of an individual. The kinetic parameters of glutamate dehydrogenase (GDH), the enzyme involved in the production of glutamate, was studied in the cerebellum and liver and the binding parameters of glutamate receptors in the cerebellum of insulin-induced hypoglycaemic and streptozotocin-induced diabetic rats were studied to reveal the role of glutamate excitotoxicity. Methods A single intrafemoral dose of streptozotocin was administered to induce diabetes. Hypoglycaemia was induced by appropriate doses of insulin subcutaneously in control and diabetic rats. The kinetic parameters Vmax and Km of GDH were studied spectrophotometrically at different substrate concentrations of α-ketoglutarate. Glutamate receptor binding assay was done with different concentrations of [3H] Glutamate. Results The GDH enzyme assay showed a significant increase (P < 0.001) in the Vmax of the enzyme in the cerebellum of hypoglycaemic and diabetic rat groups when compared to control. The Vmax of hypoglycaemic groups was significantly increased (P < 0.001) when compared to diabetic group. In the liver, the Vmax of GDH was significantly increased (P < 0.001) in the diabetic and diabetic hypoglycaemia group when compared to control. The Vmax of GDH increased significantly (P < 0.001) in the diabetic hypoglycaemic rats compared to diabetic group, whereas the control hypoglycaemic rats showed a significant decrease in Vmax (P < 0.001) when compared to diabetic and diabetic hypoglycaemic rats. The Km showed no significant change amongst the groups in cerebellum and liver. Scatchard analysis showed a significant increase (P < 0.001) in Bmax in the cerebellum of hypoglycaemic and diabetic rats when compared to control. The Bmax of hypoglycaemic rats significantly increased (P < 0.001) when compared to diabetic group. In hypoglycaemic groups, Bmax of the control hypoglycaemic rats showed a significant increase (P < 0.001) compared to diabetic hypoglycaemic rats. The Kd of the diabetic group decreased significantly (P < 0.01) when compared to control and control hypoglycaemic rats. There was a significant decrease (P < 0.05) in the Kd of diabetic hypoglycaemic group when compared to the control hypoglycaemic rats. Conclusion Our studies demonstrated the increased enzyme activity in the hypoglycaemic rats with increased production of extracellular glutamate. The present study also revealed increased binding parameters of glutamate receptors reflecting an increased receptor number with increase in the affinity. This increased number of receptors and the increased glutamate production will lead to glutamate excitotoxicity and neuronal degeneration which has an impact on the cognitive and memory ability. This has immense clinical significance in the management of diabetes and insulin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aral YZ, Gucuyener K, Atalay Y, Hasanoglu A, Turkyilmaz C, Sayal A, Biberoglu G (1998) Role of excitatory aminoacids in neonatal hypoglycemia. Acta Paediatr Jpn 40:303–306

    PubMed  CAS  Google Scholar 

  • Arison RN, Ciaccio EI, Glitzer MS, Cassaro JA, Pruss MP (1967) Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes 16:51–56

    PubMed  CAS  Google Scholar 

  • Aswathy RN, Biju MP, Paulose CS (1998) Effect of pyridoxine and insulin administration on brain glutamate dehydrogenase activity and blood glucose control in streptozotocin-induced diabetic rats. Biochim Biophys Acta 1381:351–354

    Google Scholar 

  • Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P (1997) Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem 68:2038–2045

    Article  PubMed  CAS  Google Scholar 

  • Auer RN (1991) Excitotoxic mechanisms, and age-related susceptibility to brain damage in ischemia, hypoglycemia and toxic mussel poisoning. Neurotoxicology 12:541–546

    PubMed  CAS  Google Scholar 

  • Auer RN, Siesjo BK (1993) Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab 7:611–625

    Article  PubMed  CAS  Google Scholar 

  • Beaufay H, Bendall DS, Baudhuin P, de Duve C (1959) Tissue fractionation studies. 12. Intracellular distribution of some dehydrogenases, alkaline deoxyribonuclease and iron in rat-liver tissue. Biochem J 73:623–628

    PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Berman FW, Murray TF (1996) Characterization of [3H]MK-801 binding to N-methyl-d-aspartate receptors in cultured rat cerebellar granule neurons and involvement in glutamate-mediated toxicity. J Biochem Toxicol 11:217–226

    Article  PubMed  CAS  Google Scholar 

  • Biju MP, Paulose CS (1998) Brain glutamate dehydrogenase changes in streptozotocin diabetic rats as a function of age. Biochem Mol Biol Int 44:1–7

    PubMed  CAS  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    PubMed  CAS  Google Scholar 

  • Blattner RJ (1968) Central nervous system damage and hypoglycemia. J Pediatr 72:904–906

    Article  PubMed  CAS  Google Scholar 

  • Budd SL, Nicholas DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere F, D’Ambrosi N, Sancesario G, Bernardi G, Volonte C (2001) Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochem Int 38:199–207

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  • Christie GS, Judah JD (1953) Intracellular distribution of enzymes. Proc R Soc Lond Biol Sci 141:420–433

    Article  CAS  Google Scholar 

  • di Prisco G, Harold JS (1970) Glutamate dehydrogenase of nuclear and extra-nuclear compartments of Chang’s liver cells. Eur J Biochem 12:483–489

    Article  PubMed  Google Scholar 

  • di Prisco G, Banay-Schwartz M, Strecker HJ (1968) Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem Biophys Res Commun 33:606–612

    Article  PubMed  Google Scholar 

  • Flanagan DE, Evans ML, Monsod TP, Rife F, Heptulla RA, Tamborlane WV, Sherwin RS (2003) The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab 284:E313–E316

    PubMed  CAS  Google Scholar 

  • Fraser DD, Hoehn K, Weiss S, MacVicar BA (1993) Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron 11:633–644

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RT, Hendrick GK, Biggers DW, Lacy DB, Donahue DP, Green DR, Carr RK, Williams PE, Stevenson RW, Cherrington AD (1988) Role of gluconeogenesis in sustaining glucose production during hypoglycemia caused by continuous insulin infusion in conscious dogs. Diabetes 37:749–759

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J Neurochem 13:655–669

    Article  PubMed  CAS  Google Scholar 

  • Greenfield PC, Boell EJ (2005) Malate dehydrogenases and glutamate dehydrogenase in chick liver and heart during embryonic development. J Exp Zool 174:115–123

    Article  Google Scholar 

  • Gyan K, Kanungo MS (1970) Alterations in glutamate dehydrogenase of the brain of rats of various ages. Can J Biochem 48:203–206

    Article  Google Scholar 

  • Hawdon JM (1999) Hypoglycaemia and the neonatal brain. Eur J Pediatr 158:9–12

    Article  Google Scholar 

  • Hogeboom GH, Schneider WC (1953) Intracellular distribution of enzymes. XI. Glutamic dehydrogenase. J Biol Chem 204:233–238

    PubMed  CAS  Google Scholar 

  • Hohenegger M, Rudas B (1971) Kidney function in experimental diabetic ketosis. Diabetologia 7:334–338

    Article  PubMed  CAS  Google Scholar 

  • Karp MM (1989) Hypoglycemia in diabetes among children and adolescents. Indian J Pediatr 56:93–98

    Article  Google Scholar 

  • Kaufman FR (1998) Diabetes in children and adolescents. Areas of controversy. Med Clin North Am 82:721–738

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Zhao-Xue Yu, Bertil BF, Scott AR (2005) Susceptibility of the developing brain to acute hypoglycemia involving A1 adenosine receptor activation. Am J Physiol Endocrinol Metab 289:E562–E569

    Article  PubMed  CAS  Google Scholar 

  • Kishore P, Gabriely I, Cui MH, Di Vito J, Gajavelli S, Hwang JH, Shamoon H (2006) Role of hepatic glycogen breakdown in defective counterregulation of hypoglycemia in intensively treated type 1 diabetes. Diabetes 55:659–666

    Article  PubMed  CAS  Google Scholar 

  • Kostic VS, Mojsilovic LJ, Stojanovic M (1989) Degenerative neuronal disorders associated with deficiency of glutamate dehydrogenase. J Neurol 236:111–114

    Article  PubMed  CAS  Google Scholar 

  • Langan SJ, Deary IJ, Hepburn DA, Frier BM (1991) Cumulative cognitive impairment following recurrent severe hypoglycaemia in adult patients with insulin-treated diabetes mellitus. Diabetologia 34:337–344

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Roserbbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacMullen C, Fang J, Hsu BYL, Kelly A, De Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA (2001) The Hyperinsulinism/hyperammonemia contributing investigators: hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86:1782–1787

    Article  PubMed  CAS  Google Scholar 

  • Magnan C, Laury MC, Adnot P, Doare L, Boucontet L, Kergoat M, Penicaud L, Ktorza A, Gilbert M (1998) Hormonal counterregulation failure in rats is related to previous hyperglycaemia–hyperinsulinaemia. Diabetes Metab 24:46–54

    PubMed  CAS  Google Scholar 

  • Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343:16–20

    Article  PubMed  CAS  Google Scholar 

  • Marinelli S, Federici M, Giacomini P, Bernardi G, Mercuri NB (2001) Hypoglycemia enhances ionotropic but reduces metabotropic glutamate responses in substantia nigra dopaminergic neurons. J Neurophysiol 85:1159–1166

    PubMed  CAS  Google Scholar 

  • Mavrothalassitis G, Tzimagiorgis G, Mitsialis A, Zannis V, Plaitakis A, Papamatheakis J, Moschonas N (1988) Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family. Proc Natl Acad Sci 85:3494–3498

    Article  PubMed  CAS  Google Scholar 

  • McCall AL (1992) The impact of diabetes on the CNS. Diabetes 41:557–570

    Article  PubMed  CAS  Google Scholar 

  • McGowan JE, Zanelli SA, HatnFes-Laing AG, Mishra OP, Delivoria-Papadopoulose M (2002) Modification of glutamate binding to sites in newborn brain during hypoglycaemia. Brain Res 927:80–86

    Article  PubMed  CAS  Google Scholar 

  • Miriam K, Mark AD, Elena B, de Rodriguez T, Nicholas GB (1996) Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 271:32722–32728

    Article  Google Scholar 

  • Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 1018:66–72

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptors when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  PubMed  CAS  Google Scholar 

  • Ott A, Stolk RP, Van Harskamp F, Pols HAP, Hofman A, Breteler MMB (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53:1937–1942

    PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S (1990) What excititoxin kills striatal neurons in Huntingtons disease? Clues from neurochemical studies. Neurology 40:20–24

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Berl S, Yahr MD (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15:144–153

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis AP, Constantakakis E, Smith J (1988) The neuroexcitotoxic amino acids glutamate and aspartate are altered in spinal cord and brain in ALS. Ann Neurol 24:446–449

    Article  PubMed  CAS  Google Scholar 

  • Pomara N, Singh R, Deptula D, Chou JCY, Schwartz MB, LeWitt PA (1992) Glutamate and other CSF amino acids in Alzheimer’s disease. Am J Psychiatry 149:251–254

    PubMed  CAS  Google Scholar 

  • Preetha N, Padayatti PS, Abraham A, Sudha B, Raghu KG, Paulose CS (1996) Glutamate dehydrogenase induction in the brain of streptozotocin diabetic rats. Indian J Biochem Biophys 33:428–430

    Google Scholar 

  • Rosenthal MJ, Giampeitro V, Bullmore E, Hopkins D, Evans ML, Andrews CM, Yaguez L, Simmons A, Williams SCR, Amiel SA (1999) Effects of hypoglycemia on brain activation and function in man. In: Fifth international conference on functional mapping of the human brain. Poster No: 279

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Ryan C, Vega A, Drash A (1985) Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 75:921–927

    PubMed  CAS  Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Article  PubMed  CAS  Google Scholar 

  • Sang WS, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, Liu J, Swanson RA (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by poly (ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23:10681–10690

    Google Scholar 

  • Sang WS, Garnier P, Aoyama K, Chen Y, Swanson RA (2004) Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 16:538–545

    Article  CAS  Google Scholar 

  • Sang WS, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54:1452–1458

    Article  Google Scholar 

  • Sang SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycaemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918

    Article  CAS  Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  • Sokal EM, Trivedi P, Portmann B, Mowat AP (1989) Developmental changes in the intra-acinar distribution of succinate dehydrogenase, glutamate dehydrogenase, glucose-6-phosphatase, and NADPH dehydrogenase in the rat liver. J Pediatr Gastroenterol Nutr 8:522–527

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA, Fang J, Kutyna K, Hsu BYL, Ming JE, Glaser B, Poncz M (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. Diabetes 49:667–673

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93:1753–1758

    Article  PubMed  CAS  Google Scholar 

  • Timothy JG, Young AB, Penny JB (1984) Quantitative autoradiographic distribution of [3H] glutamate binding sites in the rat central nervous system. J Neurosci 4:2133–2144

    Google Scholar 

  • Tomiyama M, Furusawa K, Kamijo M, Kimura T, Matsunaga M, Baba M (2005) Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res 20:2750–2781

    Google Scholar 

  • Trudeau F, Gagnon S, Massicotte G (2004) Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol 14:177–186

    Article  CAS  Google Scholar 

  • Vannucci RC, Vannucci SJ (2001) Hypoglycemic brain injury. Semin Neonatol 6:147–155

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES (2000) Role of high affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52:63–89

    PubMed  CAS  Google Scholar 

  • Widom B, Simonson DC (1994) Iatrogenic hypoglycemia. In: Kahn CR, Weir GC (eds) Joslin’s diabetes mellitus, 13th ed. Lea & Febiger, Philadelphia, pp 489–507

    Google Scholar 

  • Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-d-aspartate antagonist. Science 230:681–683

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263:687–689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. C. S. Paulose thanks DBT, DST, ICMR. Govt. of India and KSCSTE, Govt. of Kerala for the financial assistance. Remya Robinson thanks Cochin University For JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Paulose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, A., Robinson, R. & Paulose, C.S. Enhanced [3H] Glutamate Binding in the Cerebellum of Insulin-Induced Hypoglycaemic and Streptozotocin-Induced Diabetic Rats. Cell Mol Neurobiol 27, 1085–1095 (2007). https://doi.org/10.1007/s10571-007-9198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9198-1

Keywords

Navigation