Skip to main content

Advertisement

Log in

Inhibition of Transforming Growth Factor-β Production in Brain Pericytes Contributes to Cyclosporin A-Induced Dysfunction of the Blood-Brain Barrier

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

1. The present study was designed to clarify whether brain pericytes and pericyte-derived transforming growth factor-β1 (TGF-β1) participate in cyclosporin A (CsA)-induced dysfunction of the blood-brain barrier (BBB).

2. The presence of brain pericytes markedly aggravated CsA-increased permeability of MBEC4 cells to sodium fluorescein and accumulation of rhodamine 123 in MBEC4 cells.

3. Exposure to CsA significantly decreased the levels of TGF-β1 mRNA in brain pericytes in pericyte co-cultures. Treatment with TGF-β1 dose-dependently inhibited CsA-induced hyperpermeability and P-glycoprotein dysfunction of MBEC4 cells in pericyte co-cultures.

4. These findings suggest that an inhibition of brain pericyte-derived TGF-β1 contributes to the occurrence of CsA-induced dysfunction of the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  • Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R., and D’Amore, P. A. (1989). An activated form of transforming growth factor beta is produced by co-cultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. U.S.A. 86:4544–4548.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, M.P., Jolliet-Riant, P., Bree, F., Fruchart, J. C., Cecchelli, R., and Tillement, J. P. (1992). Drug transfer across the blood-brain barrier: Correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1797.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Yamauchi, A., Nakagawa, S., Takata, F., Kai, M., Egawa, T., Naito, M., Tsuruo, T., Sawada, Y., Niwa, M., and Kataoka, Y. (2004a). Nitric oxide mediates cyclosporine-induced impairment of the blood-brain barrier in co-cultures of mouse brain endothelial cells and rat astrocytes. Eur. J. Pharmacol. 505:51–59.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Yamauchi, A., Takata, F., Naito, M., Tsuruo, T., Higuchi, S., Sawada, Y., and Kataoka, Y. (2004b). Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell. Mol. Neurobiol. 24:491–497.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Takata, F., Yamauchi, A., Nakagawa, S., Egawa, T., Naito, M., Tsuruo, T., Sawada, Y., Niwa, M., and Kataoka, Y. (2005). Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res. 1038:208–215.

    Article  PubMed  CAS  Google Scholar 

  • Eickelberg, O., Pansky, A., Koehler, E., Bihl, M., Tamm, M., Hildebrand, P., Perruchoud, A. P., Kashgarian, M., and Roth, M. (2001). Molecular mechanisms of TGF-(beta) antagonism by interferon (gamma) and cyclosporine A in lung fibroblasts. FASEB J. 15:797–806.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, M., Elmquist, W. F., and Miller, D. W. (1996). Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci. 59:1521–1531.

    Article  PubMed  CAS  Google Scholar 

  • Gijtenbeek, J. M., Van Den Bent, M. J., and Vecht, C. J. (1999). Cyclosporine neurotoxicity. J. Neurol. 246:339–346.

    Article  PubMed  CAS  Google Scholar 

  • Hori, S., Ohtsuki, S., Hosoya, K., Nakashima, E., and Terasaki, T. (2004). A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J. Neurochem. 89:503–513.

    Article  PubMed  CAS  Google Scholar 

  • Kahan, B. D. (1989). Cyclosporine. N. Engl. J. Med. 321:1725–1738.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. J., Angel, P., Lafyatis, R., Hattori, K., Kim, K. Y., Sporn, M. B., Karin, M., and Roberts, A. B. (1990). Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol. Cell. Biol. 10:1492–1497.

    PubMed  CAS  Google Scholar 

  • Kochi, S., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y. (1999). Effect of cyclosporin A or tacrolimus on the function of blood-brain barrier cells. Eur. J. Pharmacol. 372:287–295.

    Article  PubMed  CAS  Google Scholar 

  • Kochi, S., Takanaga, H., Matsuo, H., Ohtani, H., Naito, M., Tsuruo, T., and Sawada, Y. (2000). Induction of apoptosis in mouse brain capillary endothelial cells by cyclosporin A and tacrolimus. Life Sci. 66:2255–2260.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. H., and Kuo, K. H. (2005). The critical component to establish in vitro BBB model: Pericyte. Brain Res. Brain Res. Rev. 50:258–265.

    Article  PubMed  CAS  Google Scholar 

  • Machida, H., Ogawa, K., Funaba, M., Mizutani, T., and Tsujimoto, M. (2000). mRNA expression of type I and type II receptors for activin, transforming growth factor-beta, and bone morphogenetic protein in the murine erythroleukemic cell line, F5–5.fl. Eur. J. Endocrinol. 143:705–710.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (1999). Blood-brain barrier biology and methodology. J Neurovirol. 5:556–569.

    PubMed  CAS  Google Scholar 

  • Pfeuffer, I., Klein-Hessling, S., Heinfling, A., Chuvpilo, S., Escher, C., Brabletz, T., Hentsch, B., Schwarzenbach, H., Matthias, P., and Serfling, E. (1994). Octamer factors exert a dual effect on the IL-2 and IL-4 promoters. J. Immunol. 153:5572–5585.

    PubMed  CAS  Google Scholar 

  • Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F., and Filo, R. S. (1997). A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 63:977–983.

    Article  PubMed  CAS  Google Scholar 

  • Ramsauer, M., Krause, D., and Dermietzel, R. (2002). Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J. 16:1274–1276.

    PubMed  CAS  Google Scholar 

  • Schinkel, A. H. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 36:179–194.

    Article  PubMed  CAS  Google Scholar 

  • Shuto, H., Kataoka, Y., Kanaya, A., Matsunaga, K., Sueyasu, M., and Oishi, R. (1998). Enhancement of serotonergic neural activity contributes to cyclosporine-induced tremors in mice. Eur. J. Pharmacol. 341:33–37.

    Article  PubMed  CAS  Google Scholar 

  • Shuto, H., Kataoka, Y., Fujisaki, K., Nakao, T., Sueyasu, M., Miura, I., Watanabe, Y., Fujiwara, M., and Oishi, R. (1999). Inhibition of GABA system involved in cyclosporine-induced convulsions. Life Sci. 65:879–887.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. S., Jr., Agata, J., Xia, C. F., Chao, L., and Chao, J. (2005). Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction. Life Sci. 76:2457–2471.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem. 267:20383–20391.

    PubMed  CAS  Google Scholar 

  • The U.S. Multicenter FK506 Liver Study Group. (1994). A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N. Engl. J. Med. 331:1110–1115.

    Article  Google Scholar 

  • Thomas, W. E. (1999). Brain macrophages: On the role of pericytes and perivascular cells. Brain Res. Brain Res. Rev. 31:42–57.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, A., Muramatsu, M., Tsutsumi, A., Arai, K., and Arai, N. (1994). Calcineurin activates transcription from the GM-CSF promoter in synergy with either protein kinase C or NF-kappa B/AP-1 in T cells. Biochem. Biophys. Res. Commun. 199:1064–1072.

    Article  PubMed  CAS  Google Scholar 

  • Untergasser, G., Gander, R., Lilg, C., Lepperdinger, G., Plas, E., and Berger, P. (2005). Profiling molecular targets of TGF-b1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech. Ageing Dev. 126:59–69.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported, in part, by Grants-in-Aid for Scientific Research ((B) 17390159) from JSPS, Japan and by a Grant-in-Aid for Exploratory Research (17659160) from MEXT, Japan. The authors thank Dr. Mária A. Deli (Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences) for pertinent comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Kataoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, F., Dohgu, S., Yamauchi, A. et al. Inhibition of Transforming Growth Factor-β Production in Brain Pericytes Contributes to Cyclosporin A-Induced Dysfunction of the Blood-Brain Barrier. Cell Mol Neurobiol 27, 317–328 (2007). https://doi.org/10.1007/s10571-006-9125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9125-x

KEY WORDS:

Navigation