Skip to main content
Log in

Postischemic Alterations of BDNF, NGF, HSP 70 and Ubiquitin Immunoreactivity in the Gerbil Hippocampus: Pharmacological Approach

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia.

2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min.

3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia.

4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  • Aoki, M., Abe, K., Kawagoe, J., Sato, S., Nakamura, S., and Kogure, K. (1993). Temporal profile of induction of heat shock protein 70 and heat shock cognate protein 70 mRNAs after transient ischemia in gerbil brain. Brain Res. 601:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T., Nishimura, H., Nakagawa, S., Kojima, J., Suzuki, H., Tamaki, T., Wada, Y., Yokoo, N., Sato, F., Kimata, H., Kitahara, M., Toyoda, K., Sakashita, M., and Saito, Y. (1997). Pharmacological profile of a novel synthetic inhibitor of 3-hydroxy-3-methylgluaryl-coenzyme A reductase. Arzneimittelforschung 47:904–909.

    PubMed  CAS  Google Scholar 

  • Araki, T., Kato, H., Kogure, K., and Kanai, Y. (1992). Long-term changes in gerbil brain neurotransmitter receptors following transient cerebral ischaemia. Br. J. Pharmacol. 107:437-442.

    PubMed  Google Scholar 

  • Araki, T., Kato, H., Kanai, Y., and Kogure, K. (1993). Postischemic changes of intracellular second messengers in the gerbil brain after long-term survival: an autoradiographic study. Neuroscience 53:829–836.

    Article  PubMed  CAS  Google Scholar 

  • Barde, Y. A. (1989). Trophic factors and neuronal survival. Neuron 2:1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Beck, T., Lindholm, D., Castren, E., and Wree, A. (1994). Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J. Cereb. Blood Flow Metab. 14:689–692.

    PubMed  CAS  Google Scholar 

  • Dienel, G. A., Kiessling, M., Jacewicz, M., and Pulsinelli, W. A. (1986). Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J. Cereb. Blood Flow Metab. 6:505–510.

    PubMed  CAS  Google Scholar 

  • Endres, M., Laufs, U., Huang, Z., Nakamura, T., Huang, P., Moskowitz, M. A., and Liao, J. K. (1998). Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 95:8880–8885.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Soriano, M. A., Vidal, A., and Planas, A. M. (1995). Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction. Brain Res. 692:41–46.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Ozkaynak, E., and Varshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Fujino, H., Kojima, J., Yamada, Y., Kanda, H., and Kimata, H. (1999). Studies on the metabolic fate of NK-104, a new inhibitor of HMG-CoA reductase (4): interspecies variation in laboratory animals and humans. Xenobio. Metabol. Dispos. 14:79–91.

    CAS  Google Scholar 

  • Gaspary, H., Graham, S. H., Sagar, S. M., and Sharp, F. R. (1995). HSP70 heat shock protein induction following global ischemia in the rat. Mol. Brain Res. 28:327–332.

    Article  Google Scholar 

  • Hayashi, T., Takeda, K., and Matsuda, M. (1991). Changes in ubiquitin and ubiquitin-protein conjugates in the CA1 neurons after transient sublethal ischemia. Mol. Chem. Neuropathol. 15:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Tanaka, J., Kamikubo, T., Takada, K., and Matsuda, M. (1993). Increase in ubiquitin conjugates dependent on ischemic damage. Brain Res. 620:171–173.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67:425–479.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick, J. P., and Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62:349–384.

    Article  PubMed  CAS  Google Scholar 

  • Himeda, T., Mizuno, K., Kato, H., and Araki, T. (2005). Effects of age on immunohistochemical changes in the mouse hippocampus. Mech. Ageing Dev. 126:673–677.

    Article  PubMed  CAS  Google Scholar 

  • Ide, T., Takada, K., Qiu, J. H., Saito, N., Kawahara, N., Asai, A., and Kirino, T. (1999). Ubiquitin stress response in postischemic hippocampal neurons under nontolerant and tolerant conditions. J. Cereb. Blood Flow Metab. 19:750–756.

    Article  PubMed  CAS  Google Scholar 

  • John, S., Schlaich, M., Langenfeld, M., Weihprecht, H., Schmitz, G., Weidinger, G., and Schmieder, R. E. (1998). Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation 98:211–216.

    PubMed  CAS  Google Scholar 

  • Kaesemeyer, W. H., Caldwell, R. B., Huang, J., and Caldwell, R. W. (1999). Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J. Am. Coll. Cardiol. 33:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Kajinami, K., Koizumi, J., Ueda, K., Miyamoto, S., Takegoshi, T., and Mabuchi, H. (2000). Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Am. J. Cardiol. 85:178–183.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Chen, T., Liu, X. H., Nakata, N., and Kogure, K. (1993). Immunohistochemical localization of ubiquitin in gerbil hippocampus with induced tolerance to ischemia. Brain Res. 619:339–343.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Kogure, K., Araki, T., and Itoyama, Y. (1995). Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. Brain Res. 694:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Tanaka, S., Oikawa, T., Koike, T., Takahashi, A., and Itoyama, Y. (2000). Expression of microglial response factor-1 in microglia and macrophages following cerebral ischemia in the rat. Brain Res. 882:206–211.

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe, J., Abe, K., and Kogure, K. (1993). Regional difference of HSP70 and HSC70 heat shock mRNA inductions in rat hippocampus after transient global ischemia. Neurosci. Lett. 153:165–168.

    Article  PubMed  CAS  Google Scholar 

  • Kirino, T. (1982). Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kirino, T., Tamura, A., and Sano, K. (1985). Selective vulnerability of the hippocampus to ischemia-reversible and irreversible types of ischemic cell damage. Prog. Brain Res. 63:39–58.

    Article  PubMed  CAS  Google Scholar 

  • Kirino, T., Tsujita, Y., and Tamura, A. (1991). Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11:299–307.

    PubMed  CAS  Google Scholar 

  • Kokaia, Z., Zhao, Q., Kokaia, M., Elmer, E., Metsis, M., Smith, M. L., Siesjo, B. K., and Lindvall, O. (1995). Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp. Neurol. 136:73–88.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, R., Oki, C., Muramatsu, Y., Kurosaki, R., Kato, H., and Araki, T. (2004). Pitavastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, reduces hippocampal damage after transient cerebral ischemia in gerbils. J. Neural. Transm. 111:1103–1120.

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki, R., Muramatsu, Y., Michimata, M., Matsubara, M., Kato, H., Imai, Y., Itoyama, Y., and Araki, T. (2002). Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol. Res. 24:655–662.

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki, R., Muramatsu, Y., Kato, H., Watanabe, Y., Imai, Y., Itoyama, Y., and Araki, T. (2005). Effect of angiotensin-converting enzyme inhibitor perindopril on interneurons in MPTP-treated mice. Eur. Neuropsychopharmacol. 15:57–67.

    Article  PubMed  CAS  Google Scholar 

  • Latchman, D. S. (1998). Stress proteins: an overview, Stress proteins, Springer, New York.

    Google Scholar 

  • Laufs, U., La Fata, V., Plutzky, J., and Liao J. K. (1997). Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135.

    Google Scholar 

  • Lindsay, R. M., Wiegand, S. J., Altar, C. A., and DiStefano, P. S. (1994). Neurotrophic factors: from molecule to man. Trends Neurosci. 17:182–190.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., Ernfors, P., Bengzon, J., Kokaia, Z., Smith, M. L., Siesjo, B. K., and Persson, H. (1992). Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc. Natl. Acad. Sci. USA 89:648–652.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, K., and Wieloch, T. (1989). Impairment of protein ubiquitination may cause delayed neuronal death. Neurosci. Lett. 96:264–270.

    Article  PubMed  CAS  Google Scholar 

  • Mah, A. L., Perry, G., Smith, M. A., and Monteiro, M. J. (2000). Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell. Biol. 151:847–862.

    Article  PubMed  CAS  Google Scholar 

  • Mori, H., Kondo, J., and Ihara, Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 235:1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, T., Ide, T., Ihara, Y., Tamura, A., and Kirino, T. (1996). Transient ischemia depletes free ubiquitin in the gerbil hippocampal CA1 neurons. Am. J. Pathol. 148:249–257.

    PubMed  CAS  Google Scholar 

  • Muramatsu, Y., Kurosaki, R., Mikami, T., Michimata, M., Matsubara, M., Imai, Y., Kato, H., Itoyama, Y., and Araki, T. (2002). Therapeutic effect of neuronal nitric oxide synthase inhibitor (7-nitroindazole) against MPTP neurotoxicity in mice. Metab. Brain Dis. 17:169–182.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu, Y., Kurosaki, R., Watanabe, H., Michimata, M., Matsubara, M., Imai, Y., and Araki, T. (2003). Expression of S100 protein is related to neuronal damage in MPTP-treated mice. Glia 42:307–313.

    Article  PubMed  Google Scholar 

  • Muramatsu, Y., Kurosaki, R., Kato, H., and Araki, T. (2004). Effect of pitavastatin against expression of S100β protein in the gerbil hippocampus after transient cerebral ischaemia. Acta Physiol. Scand. 184:95–107.

    Article  Google Scholar 

  • Noji, Y., Higashikata, T., Inazu, A., Nohara, A., Ueda, K., Miyamoto, S., Kajinami, K., Takegoshi, T., Koizumi, J., and Mabuchi, H. (2002). Long-term treatment with pitavastatin (NK-104), a new HMG-CoA reductase inhibitor, of patients with heterozygous familial hypercholesterolemia. Atherosclerosis 163:157–164.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, T. S. Jr., Ikeda, J., and Nakajima, T. (1990). 70-kDa heat shock protein and c-fos gene expression after transient ischemia. Stroke 21:107–111.

    Google Scholar 

  • Okada, M., Sakaguchi, T., and Kawasaki, K. (1995). Correlation between anti-ubiquitin immunoreactivity and region-specific neuronal death in N-methyl-D-aspartate-treated rat hippocampal organotypic cultures. Neurosci. Res. 22:359–366.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos, M. C., Sun, X. Y., Cao, J., Mivechi, N. F., and Giffard, R. G. (1996). Over-expression of Hsp-70 protects astrocytes from combined oxygen-glucose deprivation. Neuroreport 7:429–432.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. K., Ju, W. K., Hofmann, H. D., Kirsch, M., Ki Kang, J., Chun, M. H., and Lee, M. Y. (2000). Differential regulation of ciliary neurotrophic factor and its receptor in the rat hippocampus following transient global ischemia. Brain Res. 861:345–353.

    Article  PubMed  CAS  Google Scholar 

  • Petito, C. K., Feldmann, E., Pulsinelli, W. A., and Plum, F. (1987). Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286.

    PubMed  CAS  Google Scholar 

  • Plumier, J. C., Krueger, A. M., Currie, R. W., Kontoyiannis, D., Kollias, G., and Pagoulatos, G. N. (1997). Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2:162–167.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli, W. A., Brierley, J. B., and Plum, F. (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11:491–498.

    Article  PubMed  CAS  Google Scholar 

  • Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, W., Weinstein, P. R., and Sharp, F. R. (2000). Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol. 47:782–791.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. (1987). Ubiquitin-mediated pathways for intracellular proteolysis. Annu. Rev. Cell Biol. 3:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Schabitz, W. R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M., and Schwab, S. (2000). Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31:2212–2217.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Aoki, T., Tamaki, T., Sato, F., Kitahara, M., and Saito, Y. (1999). Hypolipidemic effect of NK-104, a potent HMG-CoA reductase inhibitor, in guinea pigs. Atherosclerosis 146:259–270.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Araki, M., and Masuzawa, T. (1992). Reaction of astrocytes in the gerbil hippocampus following transient ischemia: immunohistochemical observations with antibodies against glial fibrillary acidic protein, glutamine synthetase, and S-100 protein. Exp. Neurol. 116:264–274.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H. (1995). Neurotrophins and neuronal plasticity. Science 270:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara, T., Iihara, K., Hashimoto, N., Nishijima, T., and Taniguchi, T. (1998). Increases in levels of brain-derived neurotrophic factor mRNA and its promoters after transient forebrain ischemia in the rat brain. Neurochem. Int. 33:201–207.

    Article  PubMed  CAS  Google Scholar 

  • Vass, K., Welch, W. J., and Nowak, T. S., Jr. (1988). Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 77:128–135.

    PubMed  CAS  Google Scholar 

  • Wojcik, C., and Di Napoli, M. (2004). Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke 35:1506–1518.

  • Xu, L., and Giffard, R. G. (1997). HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci. Lett. 224:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, T., Jikihara, I., Fukumura, M., Watabe, K., Ohashi, T., Eto, Y., Hara, M., and Maeda, M. (2000). Rescue of ischemic brain injury by adenoviral gene transfer of glial cell line-derived neurotrophic factor after transient global ischemia in gerbils. Brain Res. 885:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H., Mizuta, I., Nagata, I., Xue, J., Zhang, Z., and Kikuchi, H. (2000). Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res. 877:331–344.

    Article  Google Scholar 

  • Yenari, M. A., Fink, S. L., Sun, G. H., Chang, L. K., Patel, M. K., Kunis, D. M., Onley, D., Ho, D. Y., Sapolsky, R. M., and Steinberg, G. K. (1998). Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44:584–591.

    Article  PubMed  CAS  Google Scholar 

  • Yenari, M. A., Giffard, R. G., Sapolsky, R. M., and Steinberg, G. K. (1999). The neuroprotective potential of heat shock protein 70 (HSP70). Mol. Med. Today 5:525–531.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors appreciatively acknowledge Kowa Company, Ltd., Japan, for providing pitavastatin, and helpful advice. This study was supported in part by a Grant-in-Aid for Scientific Research (13671095 and 13670627) from the Ministry of Science and Education in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Araki.

Additional information

The first two authors contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himeda, T., Tounai, H., Hayakawa, N. et al. Postischemic Alterations of BDNF, NGF, HSP 70 and Ubiquitin Immunoreactivity in the Gerbil Hippocampus: Pharmacological Approach. Cell Mol Neurobiol 27, 229–250 (2007). https://doi.org/10.1007/s10571-006-9104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9104-2

KEY WORDS:

Navigation