Skip to main content

Advertisement

Log in

Intrinsically Disordered Proteins in the Neurodegenerative Processes: Formation of Tau Protein Paired Helical Filaments and Their Analysis

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

1. Several intrinsically disordered proteins (IDPs) play principal role in the neurodegenerative processes of various types. Among them, α-synuclein is involved in Parkinson's disease, prion protein in transmissible spongiform encephalopathies, and tau protein in Alzheimer's disease (AD) and related tauopathies. Neuronal damage in AD is accompanied by the presence of tau protein fibrils composed of paired helical filaments (PHF).

2. Tau protein represents a typical IDP. IDPs do not exhibit any stable secondary structure in the free form, but they are able to fold after binding to targets and contain regions with large propensity to adopt a defined type of secondary structure. Binding–folding event at tau protein leading to PHF generation is believed to happen in the course of tauopathies.

3. Detailed molecular topology of PHF formation is unknown. There are evidences about the cross-beta structure in PHF core; however the precise arrangement of the tau polypeptide chain is unclear. In this review we summarize current attempts at in vitro PHF reconstruction and the development of methods for PHF structure determination. The emphasis is put on the monoclonal antibodies used as structural molecular probes for research on the role of IDPs in pathogenesis of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J., and Binder, L. I. (2000). C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J. Cell Sci. 113(21):3737–3745.

    CAS  PubMed  Google Scholar 

  • Ackmann, M., Wiech, H., and Mandelkow, E. (2000). Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. J. Biol. Chem. 275:30335–30343.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, A., Mederlyova, A., Novak, M., Grundke-Iqbal, I., and Iqbal, K. (2004). Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279:34873–34881.

    Article  CAS  Google Scholar 

  • Alonso, A., Zaidi, T., Novak, M., Grundke-Iqbal, I., and Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. U.S.A. 98:6923–6928.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, R. L., and Zimm, B. H. (2000). Are denatured proteins ever random coils? Proc. Natl. Acad. Sci. U.S.A. 97:12391–12392.

    Article  CAS  PubMed  Google Scholar 

  • Barghorn, S., Davies, P., and Mandelkow, E. (2004). Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43:1694–1703.

    Article  CAS  PubMed  Google Scholar 

  • Barghorn, S., and Mandelkow, E. (2002). Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41:14885–14896.

    Article  CAS  PubMed  Google Scholar 

  • Berriman, J., Serpell, L. C., Oberg, K. A., Fink, A. L., Goedert, M., and Crowther, R. A. (2003). Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc. Natl. Acad. Sci. U.S.A. 100:9034–9038.

    Article  CAS  PubMed  Google Scholar 

  • Berry, R. W., Abraha, A., Lagalwar, S., LaPointe, N., Gamblin, T. C., Cryns, V. L., and Binder, L. I. (2003). Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry 42:8325–8331.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta. Neuropathol. (Berl.) 82:239–259.

    Article  CAS  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511.

    Article  CAS  PubMed  Google Scholar 

  • Chirita, C. N., Necula, M., and Kuret, J. (2003). Anionic micelles and vesicles induce tau fibrillization in vitro. J. Biol. Chem. 278:25644–25650.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, D. W., Hwo, S. Y., and Kirschner, M. W. (1977). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol. 116:227–247.

    Article  CAS  PubMed  Google Scholar 

  • Crowther, R. A., Olesen, O. F., Smith, M. J., Jakes, R., and Goedert, M. (1994). Assembly of Alzheimer-like filaments from full-length tau protein. FEBS Lett. 337:135–138.

    Article  CAS  PubMed  Google Scholar 

  • Delacourte, A., and Defossez, A. (1986). Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J. Neurol. Sci. 76:173–186.

    Article  CAS  PubMed  Google Scholar 

  • Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., and Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry 41:6573–6582.

    Article  CAS  PubMed  Google Scholar 

  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., and Obradovic, Z. (2001). Intrinsically disordered protein. J. Mol. Graph. Model. 19:26–59.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H. J., and Wright, P. E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H. J., and Wright, P. E. (2005a). Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell. Biol. 6:197–208.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H. J., and Wright, P. E. (2005b). Elucidation of the protein folding landscape by NMR. Methods Enzymol. 394:299–321.

    Article  CAS  PubMed  Google Scholar 

  • Eliezer, D., Barre, P., Kobaslija, M., Chan, D., Li, X., and Heend, L. (2005). Residual structure in the repeat domain of tau: Echoes of microtubule binding and paired helical filament formation. Biochemistry 44:1026–1036.

    Article  CAS  PubMed  Google Scholar 

  • Feinstein, S. C., and Wilson, L. (2005). Inability of tau to properly regulate neuronal microtubule dynamics: A loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim. Biophys. Acta 1739:268–279.

    CAS  PubMed  Google Scholar 

  • Fernandez, A., Kardos, J., and Goto, Y. (2003). Protein folding: Could hydrophobic collapse be coupled with hydrogen-bond formation? FEBS Lett. 536:187–192.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, A., and Scheraga, H. A. (2003). Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc. Natl. Acad. Sci. U.S.A. 100:113–118.

    Article  CAS  PubMed  Google Scholar 

  • Fitzkee, N. C., and Rose, G. D. (2004). Reassessing random-coil statistics in unfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 101:12497–12502.

    Article  CAS  PubMed  Google Scholar 

  • Friedhoff, P., Schneider, A., Mandelkow, E. M., and Mandelkow, E. (1998a). Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37:10223–10230.

    Article  CAS  PubMed  Google Scholar 

  • Friedhoff, P., von Bergen, M., Mandelkow, E. M., Davies, P., and Mandelkow, E. (1998b). A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl. Acad. Sci. U.S.A. 95:15712–15717.

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Gamblin, T. C. (2005). Potential structure/function relationships of predicted secondary structural elements of tau. Biochim. Biophys. Acta 1739:140–149.

    CAS  PubMed  Google Scholar 

  • Gamblin, T. C., Berry, R. W., and Binder, L. I. (2003a). Modeling tau polymerization in vitro: A review and synthesis. Biochemistry 42:15009–15017.

    Article  CAS  PubMed  Google Scholar 

  • Gamblin, T. C., Berry, R. W., and Binder, L. I. (2003b). Tau polymerization: Role of the amino terminus. Biochemistry 42:2252–2257.

    Article  CAS  PubMed  Google Scholar 

  • Gamblin, T. C., King, M. E., Kuret, J., Berry, R. W., and Binder, L. I. (2000). Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry 39:14203–14210.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sierra, F., Hauw, J. J., Duyckaerts, C., Wischik, C. M., Luna-Munoz, J., and Mena, R. (2000). The extent of neurofibrillary pathology in perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathol. (Berl.) 100:29–35.

    Article  CAS  Google Scholar 

  • Gertz, H. J., Xuereb, J., Huppert, F., Brayne, C., McGee, M. A., Paykel, E., Harrington, C., Mukaetova-Ladinska, E., Arendt, T., and Wischik, C. M. (1998). Examination of the validity of the hierarchical model of neuropathological staging in normal aging and Alzheimer's disease. Acta Neuropathol. (Berl.) 95:154–158.

    Article  CAS  Google Scholar 

  • Ghoshal, N., Garcia-Sierra, F., Fu, Y., Beckett, L. A., Mufson, E. J., Kuret, J., Berry, R. W., and Binder, L. I. (2001). Tau-66: Evidence for a novel tau conformation in Alzheimer's disease. J. Neurochem. 77:1372–1385.

    Article  CAS  PubMed  Google Scholar 

  • Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., and Crowther, R. A. (1996). Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553.

    Article  CAS  PubMed  Google Scholar 

  • Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., and Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526.

    Article  CAS  PubMed  Google Scholar 

  • Goh, C. S., Milburn, D., and Gerstein, M. (2004). Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 14:104–109.

    Article  CAS  PubMed  Google Scholar 

  • Gong, C. X., Liu, F., Grundke-Iqbal, I., and Iqbal, K. (2005). Post-translational modifications of tau protein in Alzheimer's disease. J. Neural Transm. 112:813–838.

    Article  CAS  PubMed  Google Scholar 

  • Goux, W. J. (2002). The conformations of filamentous and soluble tau associated with Alzheimer paired helical filaments. Biochemistry 41:13798–13806.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, S. G., and Davies, P. (1990). A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 87:5827–5831.

    Article  CAS  PubMed  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., and Wisniewski, H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261:6084–6089.

    CAS  PubMed  Google Scholar 

  • Gunasekaran, K., Tsai, C. J., Kumar, S., Zanuy, D., and Nussinov, R. (2003). Extended disordered proteins: Targeting function with less scaffold. Trends Biochem. Sci. 28:81–85.

    Article  CAS  PubMed  Google Scholar 

  • Gunasekaran, K., Tsai, C. J., and Nussinov, R. (2004). Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J. Mol. Biol. 341:1327–1341.

    Article  CAS  PubMed  Google Scholar 

  • Harrington, C. R., Mukaetova-Ladinska, E. B., Hills, R., Edwards, P. C., Montejo de Garcini, E., Novak, M., and Wischik, C. M. (1991). Measurement of distinct immunochemical presentations of tau protein in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 88:5842–5846.

    Article  CAS  PubMed  Google Scholar 

  • Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z., and Dunker, A. K. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323:573–584.

    Article  CAS  PubMed  Google Scholar 

  • Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., and Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32:1037–1049.

    Article  CAS  PubMed  Google Scholar 

  • Jakes, R., Novak, M., Davison, M., and Wischik, C. M. (1991). Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer's disease. EMBO J. 10:2725–2729.

    CAS  PubMed  Google Scholar 

  • Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H. J., and Mandelkow, E. (2006). Global hairpin folding of tau in solution. Biochemistry 45:2283–2293.

    Article  CAS  PubMed  Google Scholar 

  • Jicha, G. A., Berenfeld, B., and Davies, P. (1999). Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease. J. Neurosci. Res. 55:713–723.

    Article  CAS  PubMed  Google Scholar 

  • Jicha, G. A., Lane, E., Vincent, I., Otvos, L., Jr., Hoffmann, R., and Davies, P. (1997). A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem. 69:2087–2095.

    Article  CAS  PubMed  Google Scholar 

  • Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E. M., and Mandelkow, E. (1996). RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399:344–349.

    Article  CAS  PubMed  Google Scholar 

  • Khuebachova, M., Verzillo, V., Skrabana, R., Ovecka, M., Vaccaro, P., Panni, S., Bradbury, A., and Novak, M. (2002). Mapping the C terminal epitope of the Alzheimer's disease specific antibody MN423. J. Immunol. Methods 262:205–215.

    Article  CAS  PubMed  Google Scholar 

  • King, M. E., Gamblin, T. C., Kuret, J., and Binder, L. I. (2000). Differential assembly of human tau isoforms in the presence of arachidonic acid. J. Neurochem. 74:1749–1757.

    Article  CAS  PubMed  Google Scholar 

  • Kirschner, D. A., Abraham, C., and Selkoe, D. J. (1986). X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc. Natl. Acad. Sci. U.S.A. 83:503–507.

    Article  CAS  PubMed  Google Scholar 

  • Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K., and Grundke-Iqbal, I. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268:24374–24384.

    CAS  PubMed  Google Scholar 

  • Koshland, D. E., Jr., Ray, W. J., Jr., and Erwin, M. J. (1958). Protein structure and enzyme action. Fed. Proc. 17:1145–1150.

    CAS  PubMed  Google Scholar 

  • Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 83:4044–4048.

    Article  CAS  PubMed  Google Scholar 

  • Kuret, J., Chirita, C. N., Congdon, E. E., Kannanayakal, T., Li, G., Necula, M., Yin, H., and Zhong, Q. (2005). Pathways of tau fibrillization. Biochim. Biophys. Acta 1739:167–178.

    CAS  PubMed  Google Scholar 

  • Lippens, G., Sillen, A., Smet, C., Wieruszeski, J. M., Leroy, A., Buee, L., and Landrieu, I. (2006). Studying the natively unfolded neuronal tau protein by solution NMR spectroscopy. Protein Pept. Lett. 13:235–246.

    Article  CAS  PubMed  Google Scholar 

  • Makrides, V., Shen, T. E., Bhatia, R., Smith, B. L., Thimm, J., Lal, R., and Feinstein, S. C. (2003). Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J. Biol. Chem. 278:33298–33304.

    Article  CAS  PubMed  Google Scholar 

  • Minoura, K., Tomoo, K., Ishida, T., Hasegawa, H., Sasaki, M., and Taniguchi, T. (2002). Amphipathic helical behavior of the third repeat fragment in the tau microtubule-binding domain, studied by (1)H NMR spectroscopy. Biochem. Biophys. Res. Commun. 294:210–214.

    Article  CAS  PubMed  Google Scholar 

  • Mukrasch, M. D., Biernat, J., von Bergen, M., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2005). Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J. Biol. Chem. 280:24978–24986.

    Article  CAS  PubMed  Google Scholar 

  • Novak, M., Jakes, R., Edwards, P. C., Milstein, C., and Wischik, C. M. (1991). Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc. Natl. Acad. Sci. U.S.A. 88:5837–5841.

    Article  CAS  PubMed  Google Scholar 

  • Novak, M., Kabat, J., and Wischik, C. M. (1993). Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J. 12:365–370.

    CAS  PubMed  Google Scholar 

  • Novak, M., Ugolini, G., Fasulo, L., Visintin, M., Ovecka, M., and Cattaneo, A. (1999). Truncation of tau and neurodegeneration. In Iqbal, K., Swaab, D. F., Winblad, B., and Wisniewski, H. M. (eds.), Alzheimer´s Disease and Related Disorders; Etiology, Pathologenesis and Therapeutics, Wiley, New York, pp. 281–291.

    Google Scholar 

  • Novak, M., Wischik, C. M., Edwards, P., Pannell, R., and Milstein, C. (1989). Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog. Clin. Biol. Res. 317:755–761.

    CAS  PubMed  Google Scholar 

  • Pollesello, P., and Annila, A. (2002). Structure of the 1–36 N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17. Biophys. J. 83:484–490.

    CAS  PubMed  Google Scholar 

  • Ross, C. A., and Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10(Suppl):S10–S17.

    Article  PubMed  CAS  Google Scholar 

  • Ruben, G. C., Novak, M., Edwards, P. C., and Iqbal, K. (1995). Alzheimer paired helical filaments, untreated and pronase digested, studied by vertical platinum-carbon replication and high resolution transmission electron microscopy. Brain Res. 675:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Sadqi, M., Hernandez, F., Pan, U., Perez, M., Schaeberle, M. D., Avila, J., and Munoz, V. (2002). Alpha-helix structure in Alzheimer's disease aggregates of tau-protein. Biochemistry 41:7150–7155.

    Article  CAS  PubMed  Google Scholar 

  • Schutkowski, M., Bernhardt, A., Zhou, X. Z., Shen, M., Reimer, U., Rahfeld, J. U., Lu, K. P., and Fischer, G. (1998). Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37:5566–5575.

    Article  CAS  PubMed  Google Scholar 

  • Schweers, O., Schonbrunn-Hanebeck, E., Marx, A., and Mandelkow, E. (1994). Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269:24290–24297.

    CAS  PubMed  Google Scholar 

  • Shi, Z., Woody, R. W., and Kallenbach, N. R. (2002). Is polyproline II a major backbone conformation in unfolded proteins? Adv. Protein Chem. 62:163–240.

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker, B. A., Portman, J. J., and Wolynes, P. G. (2000). Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc. Natl. Acad. Sci. U.S.A. 97:8868–8873.

    Article  CAS  PubMed  Google Scholar 

  • Shortle, D., and Ackerman, M. S. (2001). Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489.

    Article  CAS  PubMed  Google Scholar 

  • Sillen, A., Leroy, A., Wieruszeski, J. M., Loyens, A., Beauvillain, J. C., Buee, L., Landrieu, I., and Lippens, G. (2005). Regions of tau implicated in the paired helical fragment core as defined by NMR. Chembiochem 6:1849–1856.

    Article  CAS  PubMed  Google Scholar 

  • Sivakolundu, S. G., Bashford, D., and Kriwacki, R. W. (2005). Disordered p27(Kip1) exhibits intrinsic structure resembling the Cdk2/Cyclin A-bound conformation. J. Mol. Biol. 353:1118–1128.

    Article  CAS  PubMed  Google Scholar 

  • Skrabana, R., Csokova, N., Liebig, H. D., Smrzka, O., and Novak, M. (2004a). Tau protein fragment derived from the core PHF behaves as natively unfolded upon dimerization. Neurobiol. Aging 25:S425.

    Article  Google Scholar 

  • Skrabana, R., Kontsek, P., Mederlyova, A., Iqbal, K., and Novak, M. (2004b). Folding of Alzheimer's core PHF subunit revealed by monoclonal antibody 423. FEBS Lett. 568:178–182.

    Article  CAS  PubMed  Google Scholar 

  • Smet, C., Leroy, A., Sillen, A., Wieruszeski, J. M., Landrieu, I., and Lippens, G. (2004). Accepting its random coil nature allows a partial NMR assignment of the neuronal tau protein. Chembiochem 5:1639–1646.

    Article  CAS  PubMed  Google Scholar 

  • Syme, C. D., Blanch, E. W., Holt, C., Jakes, R., Goedert, M., Hecht, L., and Barron, L. D. (2002). A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur. J. Biochem. 269:148–156.

    Article  CAS  PubMed  Google Scholar 

  • Tholey, A., Lindemann, A., Kinzel, V., and Reed, J. (1999). Direct effects of phosphorylation on the preferred backbone conformation of peptides: A nuclear magnetic resonance study. Biophys. J. 76:76–87.

    Article  CAS  PubMed  Google Scholar 

  • Tompa, P. (2003). The functional benefits of protein disorder. J. Mol. Struct.: THEOCHEM 666667:361–371.

    Article  CAS  Google Scholar 

  • Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579:3346–3354.

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Sci. 11:739–756.

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2005). Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18:343–384.

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V. N., Winter, S., Galzitskaya, O. V., Kittler, L., and Lober, G. (1998). Hyperphosphorylation induces structural modification of tau-protein. FEBS Lett. 439:21–25.

    Article  CAS  PubMed  Google Scholar 

  • Vechterova, L., Kontsekova, E., Zilka, N., Ferencik, M., Ravid, R., and Novak, M. (2003). DC11: A novel monoclonal antibody revealing Alzheimer's disease-specific tau epitope. Neuroreport 14:87–91.

    Article  CAS  PubMed  Google Scholar 

  • von Bergen, M., Barghorn, S., Biernat, J., Mandelkow, E. M., and Mandelkow, E. (2005). Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim. Biophys. Acta 1739:158–166.

    CAS  PubMed  Google Scholar 

  • von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E. M., and Mandelkow, E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. U.S.A. 97:5129–5134.

    Article  CAS  PubMed  Google Scholar 

  • Vucetic, S., Brown, C. J., Dunker, A. K., and Obradovic, Z. (2003). Flavors of protein disorder. Proteins 52:573–584.

    Article  CAS  PubMed  Google Scholar 

  • Wille, H., Drewes, G., Biernat, J., Mandelkow, E. M., and Mandelkow, E. (1992). Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell Biol. 118:573–584.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. M., and Binder, L. I. (1995). Polymerization of microtubule-associated protein tau under near-physiological conditions. J. Biol. Chem. 270:24306–24314.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. M., and Binder, L. I. (1997). Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease. Am. J. Pathol. 150:2181–2195.

    CAS  PubMed  Google Scholar 

  • Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., and Harrington, C. R. (1996). Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. U.S.A. 93:11213–11218.

    Article  CAS  PubMed  Google Scholar 

  • Wischik, C. M., Novak, M., Edwards, P. C., Klug, A., Tichelaar, W., and Crowther, R. A. (1988a). Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 85:4884–4888.

    Article  CAS  PubMed  Google Scholar 

  • Wischik, C. M., Novak, M., Thøgersen, H. C., Edwards, P. C., Runswick, M. J., Jakes, R., Walker, J. E., Milstein, C., Roth, M., and Klug, A. (1988b). Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 85:4506–4510.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J. G., Mirra, S. S., Pollock, N. J., and Binder, L. I. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. U.S.A. 83:4040–4043.

    Article  CAS  PubMed  Google Scholar 

  • Wulf, G., Finn, G., Suizu, F., and Lu, K. P. (2005). Phosphorylation-specific prolyl isomerization: Is there an underlying theme? Nat. Cell. Biol. 7:435–441.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Support from the International Centre for Genetic Engineering and Biotechnology (ICGEB, grant CRP/SVK05-01) as well as from Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences (VEGA, grant 2/6172/26) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Novak.

Additional information

Dedicated to the late Peter Kontsek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrabana, R., Sevcik, J. & Novak, M. Intrinsically Disordered Proteins in the Neurodegenerative Processes: Formation of Tau Protein Paired Helical Filaments and Their Analysis. Cell Mol Neurobiol 26, 1083–1095 (2006). https://doi.org/10.1007/s10571-006-9083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9083-3

KEY WORDS:

Navigation