Skip to main content
Log in

Identification of Endophilins 1 and 3 as Selective Binding Partners for VGLUT1 and Their Co-Localization in Neocortical Glutamatergic Synapses: Implications for Vesicular Glutamate Transporter Trafficking and Excitatory Vesicle Formation

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Selective protein–protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation.

2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1–endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3.

3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Barbosa, J., Jr., Ferreira, L. T., Martins-Silva, C., Santos, M. S., Torres, G. E., Caron, M. G., Gomez, M. V., Ferguson, S. S., Prado, M. A., and Prado, V. F. (2002). Trafficking of the vesicular acetylcholine transporter in SN56 cells: A dynamin-sensitive step and interaction with the AP-2 adaptor complex. J. Neurochem. 82:1221–1228.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, G. J., Torricelli, J. B., Evege, E. K., and Price, P. J. (1993). Optimized survival of hippocampal neurons in B7-supplemted Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–576.

    Article  PubMed  CAS  Google Scholar 

  • Cesareni, G., Panni, S., Nardelli, G., and Castagnoli, L. (2002). Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett. 513:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Cestra, G., Castagnoli, L., Dente, L., Minenkova, O., Petrelli, A., Migone, N., Hoffmuller, U., Schneider-Mergener, J., and Cesareni, G. (1999). The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin 1 at distinct sites that display an unconventional binding specificity. J. Biol. Chem. 274:32001–32007.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Deng, L., Maeno-Hikichi, Y., Lai, M., Chang, S., Chen, G., and Zhang, J. F. (2003). Formation of an endophilin-Ca2 + channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H., and Fonnum, F. (1992). The ontogeny of the uptake systems for glutamate, GABA, and glycine in synaptic vesicles isolated from rat brain. Neurochem. Res. 17:457–462.

    Article  PubMed  CAS  Google Scholar 

  • Cubelos, B., Gimenez, C., and Zafra, E. (2005). The glycine transporter GLYT1 interacts with Sec3, a component of the exocyst complex. Neuropharmacology 49:935–944.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, R. W., Collins, C. A., Gelfaqnd, M. V., Dant, J., Brooks, E. S., Krantz, D. E., and DiaAntonio, A. (2004). Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J. Neurosci. 24:10466–10474.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, R. W., Collins, C. A., Chen, K., Gelfand, M. V., Featherstone, D. E., and DiAntonio, A. (2006). A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49:11–16.

    Article  PubMed  CAS  Google Scholar 

  • De Gois, S., Schafer, M. K.-H., Defamie, N., Chen, C., Weihe, E., Varoqui, H., and Erickson, J. D. (2005). Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J. Neurosci. 25:7121–7133.

    Article  PubMed  CAS  Google Scholar 

  • Deken, S. L., Bechman, M. L., Boos, L., and Quick, M. W. (2000). Transport rates of GABA transporters: Regulation by the N-terminal domain and syntaxin 1. Nat. Neurosci. 3:998–1003.

    Article  PubMed  CAS  Google Scholar 

  • Dobrunz, L. E., and Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fremeau, R. T., Troyer, M. D., Pahner, I., Nygaard, G. O., Tran, C. H., Reimer, R. J., Bellocchio, E. E., Fortin, D., Storm-Mathisen, J., and Edwards, R. H. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260.

    Article  PubMed  CAS  Google Scholar 

  • Fremeau, R. T., Volgmaier, S., Seal, R. P., and Edwards, R. H. (2004a). VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27:97–103.

    Article  CAS  Google Scholar 

  • Fremeau, R. T., Kam, K., Qureshi, R., Johnson, J., Copenhagen, D. R., Storm-Mathisen, J., Chaudhry, F. A., Nicoll, R. A., and Edwards, R. H. (2004b). Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304:1815–1819.

    Article  PubMed  CAS  Google Scholar 

  • Gad, H., Ringstad, N., Low, P., Kiaerulff, O., Gustafsson, J., Wenk, M., DiPaolo, G., Nemoto, Y., Crun, J., Ellisman, M. H., De Camilli, P., Shupliakov, O., and Brodin, L. (2000). Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27:301–312.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, S. P., and Stevens, C. F. (2003). Three modes of synaptic vesicular cycling revealed by single-vesicle imaging. Nature 23:607–613.

    Article  CAS  Google Scholar 

  • Gray, E. G. (1975). Synaptic fine structure and nuclear, cytoplasmic and extracellular networks: The stereoframework concept. J. Neurocytol. 4:315–339.

    Article  PubMed  CAS  Google Scholar 

  • Guichet, A., Wucherpfennig, T., Dudu, V., Etter, S., Wilsch-Brauniger, M., Hellwig, A., Gonzalez-Gaitan, M., Huttner, W. B., and Schmidt, A. A. (2002). Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J. 21:1661–1672.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, E., Bellenchi, G. C., Gras, C., Bernard, V., Ravassard, P., Bedet, C., Gasnier, B., Giros, B., and El Mestikawy, S. (2001). The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J. Neurosci. 21:RC181.

    PubMed  CAS  Google Scholar 

  • Higgins, M. K., and McMahon, H. T. (2002). Snap-shots of clathrin-mediated endocytosis. Trends Biochem. Sci. 27:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. C., Errington, R., Fricker-Gates, R., and Jones, L. (2004). Endophilin A3 forms filamentous structures that colocalize with microtubules but not with actin filaments. Brain Res. Mol. Brain Res. 128:182–192.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M., Song, W., Liu, M. Y., Jin, L., Dykes-Hoberg, M., Lin, C. I., Bowers, W. J., Federoff, H. J., Sternweis, P. C., and Rothstein, J. D. (2001). Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410:89–93.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. H., and Hersh, L. B. (2004). The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2. J. Biol. Chem. 279:12580–12587.

    Article  PubMed  CAS  Google Scholar 

  • Kish, P. E., Kim, S. Y., and Ueda, T. (1989). Ontogeny of glutamate accumulating activity in rat brain synaptic vesicles. Neurosci. Lett. 97:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., and Avery, L. (1999). EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in caenorhabditis elegans. J. Neurosci. 19:59–67.

    Google Scholar 

  • Lin, C. I., Orlov, I., Ruggiero, A. M., Dykes-Hoberg, M., Lee, A., Jackson, M., and Rothstein, J. D. (2001). Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410:84–88.

    Article  PubMed  CAS  Google Scholar 

  • Micheva, K. D., Kay, B. K., and McPherson, P. S. (1997). Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J. Biol. Chem. 272:27239–27245.

    Article  PubMed  CAS  Google Scholar 

  • Minelli, A., Edwards, R. H., Manzoni, T., and Conti, F. (2003). Postnatal development of the glutamate vesicular transporter VGLUT1 in rat cerebral cortex. Brain Res. Dev. 140:309–314.

    Article  CAS  Google Scholar 

  • Murthy, V. N., Schikorski, T., Stevens, C. F., and Zhu, Y. (2001). Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682.

    Article  PubMed  CAS  Google Scholar 

  • Perego, C., Vanoni, C., Villa, A., Longhi, R., Kaech, S. M., Frohli, E., Hajnal, A., Kim, S. K., and Pietrini, G. (1999). PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J. 18:2384–2393.

    Article  PubMed  CAS  Google Scholar 

  • Renger, J. J., Egles, C., and Liu, G. (2001). A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29:469–484.

    Article  PubMed  CAS  Google Scholar 

  • Reutens, A. T., and Begley, C. G. (2002). Endophilin-1: A multifunctional protein. Int. J. Biochem. Cell Biol. 34:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  • Rikhy, R., Kumar, V., Mittal, R., and Krishnan, K. S. (2002). Endophilin is critically required for synapse formation and function in Drosophila melanogaster. J. Neurosci. 22:7478–7484.

    PubMed  CAS  Google Scholar 

  • Ringstad, N., Nemoto, Y., and De Camilli, P. (1997). The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl. Acad. Sci. U.S.A. 94:8569–8574.

    Article  PubMed  CAS  Google Scholar 

  • Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Schupliakov, O., and De Camilli, P. (1999). Endophilin/SH2p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24:143–154.

    Article  PubMed  CAS  Google Scholar 

  • Ringstad, N., Nemoto, Y., and De Camilli, P. (2001). Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J. Biol. Chem. 276:40424–40430.

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund, C., Rettig, J., and Brose, N. (2003). Molecular mechanisms of active zone function. Curr. Opin. Neurobiol. 13:509–519.

    Article  PubMed  CAS  Google Scholar 

  • Royle, S. J., and Lagnado, L. (2003). Endocytosis at synaptic terminal. J. Physiol. 553:345–355.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, M. K.-H., Varoqui, H., Defamie, N., Weihe, E., and Erickson, J. D. (2002). Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J. Biol. Chem. 277:50734–50748.

    Article  PubMed  Google Scholar 

  • Schuske, K. R., Richmond, J. E., Matthies, D. S., Davis, W. S., Runz, S., Rube, D. A., van der Bliek, A. M., and Jorgensen, E. M. (2004). Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40:749–762.

    Article  Google Scholar 

  • Simpson, F., Hussain, N. K., Qualmann, B., Kelly, R. B., Kay, B. K., McPherson, P. S., and Schmid, S. L. (1999). SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat. Cell Biol. 1:119–124.

    Article  PubMed  CAS  Google Scholar 

  • Slepnev, V. I., and De Camilli, P. (2000). Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat. Rev. 1:161–172.

    CAS  Google Scholar 

  • Solomaha, E., Szeto, F. L., Yousef, M. A., and Palfrey, H. C. (2005). Kinetics of Src homology 3 domain association with the proline-rich domain of dynamins: specificity, occlusion, and the effects of phosphorylation. J. Biol. Chem. 280:23147–23156.

    Article  PubMed  CAS  Google Scholar 

  • Sugiaura, H., Iwata, K., Matsuoka, M., Hayashi, T., Takemiya, T., Yasuda, S., Ichikawa, M., Yamauchi, T., Mehlen, P., Haga, T., and Yamagata, K. (2004). Inhibitory role of endophilin 3 in receptor-mediated endocytosis. J. Biol. Chem. 279:23342–23348.

    Google Scholar 

  • Sun, A. Q., Balasubramanivan, N., Liu, C. J., Shahid, M., and Suchy, F. J. (2004). Association of the 16-kDa subunit of c of vacuolar proton pump with the ileal Na+-dependent bile acid transporter: Protein–protein interaction and intracellular trafficking. J. Biol. Chem. 279:16295–16300.

    Article  PubMed  CAS  Google Scholar 

  • Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000). Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Tan, P. K., Waites, C., Liu, Y., Krantz, D. E., and Edwards, R. H. (1998). A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters. J. Biol. Chem. 273:17351–17360.

    Article  PubMed  CAS  Google Scholar 

  • Terada, S., and HIrokawa, N. (2000). Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol. 10:566–573.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M. (2000). Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Torres, G. E., Yao, W. D., Mohn, A. R., Quan, H., Kim, K. M., Levey, A. I., Staudinger, J., and Caron, M. G. (2001). Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30:121–134.

    Article  PubMed  CAS  Google Scholar 

  • Varoqui, H., and Erickson, J. D. (1997). Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol. Neurobiol. 15:165–191.

    PubMed  CAS  Google Scholar 

  • Varoqui, H., and Erickson, J. D. (1998). The cytoplasmic tail of the vesicular acetylcholine transporter contains a synaptic vesicle targeting signal. J. Biol. Chem. 273:9094–9098.

    Article  PubMed  CAS  Google Scholar 

  • Varoqui, H., Schäfer, M. K.-H., Zhu, H., Weihe, E., and Erickson, J. D. (2002). Identification of the differentiation-associated Na+/Pi transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J. Neurosci. 22:142–155.

    PubMed  CAS  Google Scholar 

  • Vega, I. E., and Hsu, S. C. (2001). The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21:3839–3848.

    PubMed  CAS  Google Scholar 

  • Verstreken, P., Koh, T. W., Schulze, K. L., Zhai, R. G., Hiesinger, P. R., Zhou, Y., Mehta, S. Q., Cao, Y., Roos, J., and Bellen, H. J. (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40:733–748.

    Article  PubMed  CAS  Google Scholar 

  • Wersinger, C., and Sidhu, A. (2003). Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci. Lett. 340:189–192.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, N. R., Kang, J., Hueske, E. V., Leung, T., Varoqui, H., Murnick, J. G., Erickson, J. D., and Liu, G. (2005). Presynaptic regulation of quantal size by VGLUT1. J. Neurosci . 25:6221–6234.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik, S. M., Rhee, J. S., Herzog, E., Sigler, A., Jahn, R., Takamori, S., Brose, N., and Rosenmund, C. (2004). An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc. Natl. Acad. Sci. U.S.A. 101:7158–7163.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH grant NS36936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Gois, S., Jeanclos, E., Morris, M. et al. Identification of Endophilins 1 and 3 as Selective Binding Partners for VGLUT1 and Their Co-Localization in Neocortical Glutamatergic Synapses: Implications for Vesicular Glutamate Transporter Trafficking and Excitatory Vesicle Formation. Cell Mol Neurobiol 26, 677–691 (2006). https://doi.org/10.1007/s10571-006-9054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9054-8

KEY WORDS:

Navigation